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Differential Analysis of Peak-like data
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Aims of the project

Develop a test procedure to compare the location of the peaks

Assess the confidence of the test in terms of family wise error rate
and false discovery rate

Perform simulations & analyze experimental data

Provide a computationally sounded procedure & package
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PP & Genomic Features

Outline

@ Point Process modeling of Genomic features
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PP & Genomic Features

Observations are random sets of points

e We observe two independent sets of peaks location:
NA = {Tl, ey TnA} and NB = {Tl, ceay TnB}.

e We model those sets by two heterogeneous Poisson processes with
intensity Aa, Ag in L2[0,1].
e For any interval 1 C [0, 1],

Na(l) ~ P </I)\A(t)dt> and  Ng(l)~P </I)\B(t)dt>

Aim

Testing Ay = Ag, or more precisely, detecting zones where Ag # A\g
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PP & Genomic Features

Definition of the joint process

e From (Na, Ng) we define the couple (N, ¢)
o N = Ny U Npg is the joint process of intensity A = Aa + Ag,

e and where ¢ = (¢7)1ep is a set of marks:

{+1, if T € Ng,
ET =

-1, if T € Ng.

Na * L =
Np
N

Ty T, T3 Ty Ts Ts

£t +1 -1 -1 +1 +1 -1
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PP & Genomic Features

Conditional distribution of the marks

e Conditionally to N, the distribution of the marks is:

Aa(T)

Pler =+1N) = ) 1 2s(M)

e We introduce notation:

)\A(t) — )\B(t)

vVt e [0,1], 0(t) = M0 T s(D)

e Conditionally to N, the distribution of the marks becomes:

8T|N ~ 2B (Q(T;—i_l> -1,

Continuous Testing 8/39



PP & Genomic Features

Nuisance parameters and conditional testing

e The distribution of the joint process (N, ¢) can be re-parametrized:
(N, E) ~ Pg’)\

e ) and @ are unknown under the null, but are not “really” of interest

o We propose procedures that are conditional to the observed joint
process N.

Reparametrization of the test

Conditional to N, the new hypothesis focuses on € and becomes 6 = 0.
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PP & Genomic Features

An infinite set of local null hypothesis

e We propose a functional testing framework : Ag = Ag or = 0.

The global strategy corresponds to the global null hypothesis.

We consider local hypothesis:

Hoe: {0(t) =0} against Hy;: {6(t) #0}.

The null hypothesis corresponding to

{Vt € J, 0(t) = 0} = {Ho =N Ho,t.}

teJ

The global null hypothesis corresponds to H {[0, 1]}.

The null function on [0, 1] is denoted by 6y in the sequel.
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PP & Genomic Features

Local testing with a cartoon
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PP & Genomic Features

Definition of scanning windows

e We introduce a resolution parameter 7 that is fixed

e Using the continuous testing framework, we perform a whole
continuum of tests for each interval of length 7 contained in [0, 1].

e We will distinguish sets of points (denoted by t) from sets of
windows center (denoted by x)

Vx e Xy =[n/2,1=n/2], ly(x) = [x =n/2,x+n/2]
I

Our multiple testing procedures are based on single tests on Ho {/,(x)}
for all possible window centers
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PP & Genomic Features

Is continuous testing computationally tractable 7
e Each observation T; has a span 1 and will be used by the testing
procedure on [T; —n/2, T; +n/2]
e There exists a partition 7 of A}, consisting in M intervals and with
inner breaks given by

T= (U {T—Tl/2}U{T+77/2}) ()%,

TeN

e The set 7 is chosen as the center of the observed windows

5 T T T3 Ty T: Ts
|Tm—1,7Tm] are homogeneous intervals - Mool 11 -1
o oo L(ty———
in terms of composition N N I,(x) ! —
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Test Stat & p-values

Outline

@ Test statistics and associated p-value process
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Test Stat & p-values

Introducing kernel-based statistics

e We would like to define a statistics based an estimator of:

2
— 2 — —
sl = [ (e~ 2e(9) s

(%
e Ho{l,(x)} is rejected if this norm is high w.r.t. its expectation

e Our test statistics is (n = N([0, 1]):

SW(X):# Z Kh(T— T’) ETET
n(n—1) TAT/ €N (x)

e S5,(x + dx) can be computed from S,(x) which results in an online
algorithm
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Test Stat & p-values

Conditional testing and the p-value process

e We are interested in the distribution of S, (x) under Ho{/,(x)}:
Vx € Xy, Foon(six) =Py, (Sn(x) > s|/v)

e Since the intensities are heterogeneous, we rather consider
p-values (normalize between [0, 1]):

Vx € Xy, py(x) = FQO,N<S77(X);X>
e Since S,(x) is piece-wise constant, <pn(x)> is a piece-wise

constant process on [0,1].
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Test Stat & p-values

The p-value process with a cartoon
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Test Stat & p-values s Simulations

Conditional Monte-Carlo approximation of the p-values

e Sample B independent draws of i.i.d. Rademacher sets of marks:

eb = (%) ren, for b=1,...B

e Label the observed marks such that € := (e7)7ep, (first term of a

B + 1-sample of marks)
e The conditional distribution given N of the Rademacher process is:

ebIN ~2B(1/2) -1,

o We obtain the estimated p-value process

B
R 1
P(x) =51 (Hbz_:ll{ss(x)%%(x)}) ’
=

This parametrization guarantees that under Ho{/,(x)}:
Yo € [0, 1], P97A(ﬁn(x) < a) < a
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Outline

© Two error rates in continuous time
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Acceptation and Rejection Sets

e A multiple testing procedure is defined by a rejection set:
Ry(u) ={x € &) : py(x) < u},

e u is a threshold potentially depending on the data.
e The set of accepted windows is denoted by

Ap(u) :i={x € X, : py(x) > u}.
e A,(u) is an approximation of

Jo = {xe X, : Vt e l(x),6(t) =0}

Challenge

How to evaluate the quality of threshold u ?
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False Positive Windows and the continuous FWER
e The target is the set of false positive windows
JINR,(v)
e Its size can be measured by its Lebesgue measure:
A O Ry ()
e The Family-Wise Error Rate in continuous time can be defined by

FWER],(u) = Po,, (A(Jg ARy (1)) > 0).

Aim
Calibrate u® € [0, 1] such that FWER] , (u®) is controlled at level «
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False Positive Windows and the continuous FDR
e The target is the set of false positive windows
Jo N Rp(u)
e Its size can be measure by its Lebesgue measure:
NG 0 Ry (w)
e The False Discovery Rate in continuous time can be defined by

A (g ﬂRn(v))>

FDRy \(v) = Egx ( A (R(v))

Aim
Calibrate v € [0, 1] such that FDR) ,(v®) is controlled at level a
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Controlling the FWER in continuous time - 1

e The starting point is that we have for all v,

{H N Ry(u) # 0}

{Elx ey : py(x) < u}

= inf < .
{x'ng (P ()} }
e Control the FWER by learning the distribution of the min. p-values

under the null.

o Consider the conditional a-quantile of the min. p-value process on
[0, 1]:

Uj‘g = min {u €[0,1] : Py, (Xigjn {pp(x)} < u ‘N) } .
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Controlling the FWER in continuous time - 2

But the set of windows Jg is unknown: Choose the worst-case
scenario

e We compute the quantile of the min. of the p-value process on X;:

U, = min {u €[0,1] : Py, (Xien;n {py(x)} <u \N) }

This ensures the control of the FWER at level o

This procedure can be extended to step-down approaches.
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FWER-Adjusted p-value process: the min-p procedure

o In practice we would like to use the adjusted p-value process:

Vx € Xy, qy(x) = Fé‘;f',{, (Pn(X)>

o This requires to compute the distribution of the min-p under the null

Vz € [0,1], FN(2) = Poy < inf {py(x)} < z| N)
’ XEXy,
o In practice we control the FWER using:

vx € Xy, Gylx) = Fn ()

Continuous Testing 25/39



The min-p procedure with a cartoon
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The weighted BH procedure with a cartoon
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Simulations

Outline

@ Simulations
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Simulations

Simulation design in a cartoon

Direct simulation
of the marks
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Simulations

Error Rates control for different signal strengths
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Figure: Influence of # on FWER,, & FDR,, n = 0.1.
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Simulations

FDR control for different g
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Application

Outline

@ Application
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Application

Recombination and PRDM9 binding sites
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Application

Comparison of PRDM9 binding between genotypes
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Application

Comparison of PRDM9 binding between genotypes
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Application

Comparison of PRDM9 binding between genotypes
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Conclusion

Outline

@ Conclusions
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Conclusion

Perspectives of our work

e We provide a framework to locally compare Poisson processes
intensities

e How procedures control the FWER and the FDR in continuous time

e This framework can be extended to one-sided hypothesis, and
one-sample testing (homogeneity)

e Provides a new look on scanning statistics (lack of proper definition
for FDR)

e Extension to 2D / 3D scans ?
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Conclusion

A weighted step-up BH procedure

e Let 7 be the partition that defines the windows:

M-1
A (Rn(v)) = (Tm+1 — Tm)]‘{Pn(Tm)SV}'

m=0

Compute the weights wy, = (Tmt+1 — 7m)/(1 — 1)

Denote {pm,1 < m < M} = {py(7m),0 < m < M — 1} and order
this p-valuesin increasing order p,(1) < -+ < py(um) for an
appropriate permutation o of {1,..., M},

Consider k = max{k € {1,..., M} : Po(k) < aS Wo (1)}

Compute V¢ as aZLl W (1)
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Conclusion

BH-adjusted p-value process

e Let us denote by (qn(x))xeXn the adjusted p-values of the step-up

procedure:
an(x) = min % .
kiPatn2Pa () | S21q Wiy

e The decision at level « is simply to reject the nulls corresponding to
windows /,(x) with adjusted p-valueslower than .

e We can check that

Ry(VY) ={x € X, : gy(x) < a}.
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Conclusion

Calibration of the window size 7
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Figure: FPR* & TPR* for different values of n (mg = 0.5). On point
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