Le nombre de chemins en percolation orientée

Olivier Garet, en commun avec Régine Marchand et Jean-Baptiste Gouéré.

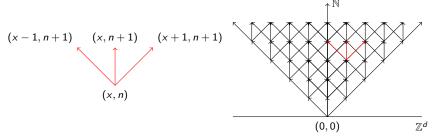
MAS 2016, Grenoble.

Institut Élie Cartan, Université de Lorraine, Nancy, France.

Percolation orientée en dimension d+1

Le graphe orienté $\mathbb{Z}^d \times \mathbb{N}$.

Chaque sommet a 2d + 1 enfants:



Le graphe aléatoire.

Sous la mesure produit de Bernoulli \mathbb{P}_p , chaque arête est gardée avec probabilité $p \in (0,1)$, de manière indépendante.

Quelques dessins

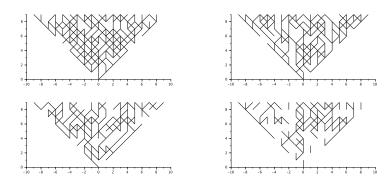
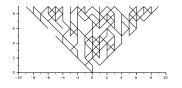


Figure: Exemples avec p = 0.7, 0.6, 0.5, 0.4.

Percolation orientée en dimension d+1

Transition de phase:



Existence de chemins ouverts infinis ? $\Omega_{\infty} = \{(0,0) \to \infty\}$

$$\mathbb{P}_{m{
ho}}(\Omega_{\infty})>0\quad\Leftrightarrow\quad m{
ho}>\overrightarrow{p_c}(d+1).$$

Deux questions naturelles:

1 Où vont les chemins?

$$\xi_n = \{ x \in \mathbb{Z}^d : (0,0) \to (x,n) \}.$$

- \rightsquigarrow Théorème de forme asymptotique pour ξ_n .
- 2 Combien de chemins ouverts jusqu'une hauteur donnée, vers un point donné ?

Vu du dessus: la forme asymptotique $(p > \overrightarrow{p_c}(d+1))$

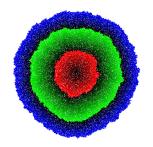


Figure: forme asymptotique, couleur = temps d'atteinte

- $\xi_n = \{x \in \mathbb{Z}^d : (0,0) \to (x,n)\}.$
- Temps d'atteinte : $t(x) = \inf\{n \ge 0 : x \in \xi_n\}.$
- Points atteints: $H_n = \{x \in \mathbb{Z}^d : t(x) \le n\}.$ $(H_n)_n$: suite croissante d'ensembles aléatoires.

Théorème (Forme asymptotique)

On note $\overline{\mathbb{P}}_p = \mathbb{P}_p(\cdot|\Omega_\infty)$. Il existe une norme μ_p sur \mathbb{R}^d (boule unité: A_{μ_p}), telle que

$$\overline{\mathbb{P}}_p\left(\exists N>0 \quad \forall n\geq N \quad (1-arepsilon)A_{\mu_p}\subset rac{H_n+[0,1]^d}{n}\subset (1+arepsilon)A_{\mu_p}
ight)=1.$$

[Durrett-Griffeath 82, Bezuidenhout-Grimmett 90, Durrett 91, Garet-Marchand 12]

Le nombre de chemins ouverts en percolation orientée

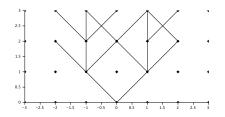


Figure: n = 3, p = 0.6.

 $N_{x,n}$: nombre de chemins de (0,0) à (x,n)

$$N_n = \sum_{x \in \mathbb{Z}^d} N_{x,n}$$
:

nombre de chemins de (0,0) au niveau n.

$$N_{x,n+1} = \sum_{\|y-x\| \le 1} 1_{(y,n) \to (x,n+1)} N_{y,n}.$$

Question

Comportement de N_n ?

Le nombre de chemins: comportement moyen et martingale

■ Comportement moyen: $\mathbb{E}_p(N_n) = (2d+1)^n p^n$;

$$\frac{1}{n}\log \mathbb{E}_p(N_n) = \log((2d+1)p).$$

$$\exists W \geq 0 \quad \lim_{n \to +\infty} \frac{N_n}{((2d+1)p)^n} = W \quad \mathbb{P}_p - a.s.$$

■ sur l'événement $\{W > 0\}$: $\lim_{n \to +\infty} \frac{1}{n} \log N_n = \log((2d+1)p)$.

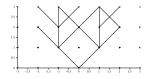
Sur $\{W>0\}$, $(N_n)_n$ a la même croissance exponentielle que $(\mathbb{E}_p(N_n))_n$.

Problème

Souvent, W = 0. Que dire alors ?

[Yoshida 08, Lacoin 02]

Le théorème principal



 $N_{x,n}$: nombre de chemins ouverts de (0,0) à (x,n) $N_n = \sum_{x \in \mathbb{Z}^d} N_{x,n}$: nombre de chemins ouverts de (0,0) au n.

Figure: n = 3, p = 0.6.

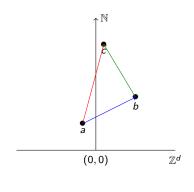
Theorem (Garet–Gouéré–Marchand)

$$\lim_{n\to +\infty} \frac{1}{n} \log N_n = \tilde{\alpha}_p(0) \quad \overline{\mathbb{P}}_p - a.s.$$

Stratégie :

- Dans un ensemble dense de directions, trouver une infinité de points pour lesquels $N_{x,n}$ est contrôlé.
- Utiliser la zone couplée de la percolation orientée retournée pour contrôler les fluctuations.

Sous-additivité



Soit a, b, c avec $a \to b \to c$ dans $\mathbb{Z}^d \times \mathbb{N}$:

$$\begin{aligned} & \textit{N}_{a,c} \geq \textit{N}_{a,b}\textit{N}_{b,c} \\ & (-\log\textit{N}_{a,c}) \leq (-\log\textit{N}_{a,b}) + (-\log\textit{N}_{b,c}). \end{aligned}$$

- sous-additivité
- stationarité : $N_{b,c} \sim N_{0,c-b}$
- intégrabilité: N_x intégrable ? (Hum...)

$$\left(\frac{1}{n}\log N_n\right)_n$$
 devrait converger.

Ca sent le théorème ergodique sous-additif!

[Kingman 68,73;

Hammersley 74...]

Mais il faut choisir des points aléatoires a,b,c de manière à avoir des intégrabilités et conserver des bonnes stationnarités.

Le temps d'atteinte essentiel

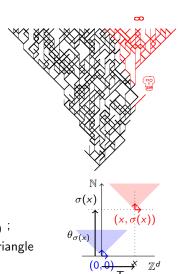
[Garet-Marchand 12]

On note $\overline{\mathbb{P}}_p(.) = \mathbb{P}_p(.|\Omega_{\infty})$. Propriétés géométriques:

- $(0,0) \to (x,\sigma(x)) \to +\infty;$
- $\sigma(x)$ est proche de t(x): $\forall p > 0$ $\sup \overline{\mathbb{E}}_p(|\sigma(x) - t(x)|^p) < +\infty$.
- $\begin{array}{c} \bullet \quad \frac{\sigma(x)}{\mu(x)} \to 1 \quad (\overline{\mathbb{P}}_p p.s., L^1) \\ \text{quand} \quad \|x\| \to +\infty \end{array}$

Sur les lois:

- $lackbox{$\overline{\mathbb{P}}_p$ est invariant sous $\widetilde{ heta}_{ imes} = \mathcal{T}_{ imes} \circ heta_{\sigma(imes)}$;}$
- Sous $\overline{\mathbb{P}}_p$, $\sigma(x)$ est indépendant du triangle rose



Limites directionnelles

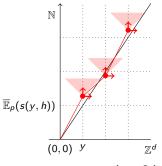
$$(y,h) \in \mathbb{Z}^d \times \mathbb{N}^*$$
. $\hat{\theta} = \tilde{\theta}_0^h \circ \tilde{\theta}_y$, temps associé $s(y,h)$.

- $(0,0) \to (y,s(y,h)) \to \infty;$
- $\blacksquare \overline{\mathbb{P}}_p$ est invariant par $\hat{\theta}$;
- $(s(y,h) \circ (\hat{\theta}^j)_{j\geq 0}$ sont iid integrables.

Itération: Des points d'appui dans une direction

$$S_n = \sum_{k=0}^{n-1} s(y,h) \circ \hat{\theta}^k \sim n \overline{\mathbb{E}}_p(s(y,h)).$$

- $(0,0) \to (y,S_1) \to (2y,S_2) \to \dots$
- $N_{(ny,S_n)}.N_{(py,S_p)}\circ \hat{\theta}^n \leq N_{((n+p)y,S_{n+p})}.$
- $0 \leq \log N_{(ny,S_n)} \leq S_n \log(2d+1).$



•: (ny, S_n) .

Le **théorème ergodique sous-additif** s'applique à $f_n = -\log N_{(ny,S_n)}$:

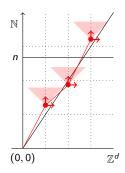
$$\exists \alpha_p(y,h) > 0 \quad \lim_{n \to +\infty} \frac{1}{S_n(y,h)} \log N_{(ny,S_n)} = \alpha_p(y,h) \quad \overline{\mathbb{P}}_p - p.s.$$

Retour au global

Limites Directionnelles: $\lim_{n \to +\infty} \frac{1}{S_n(y,h)} \log N_{(ny,S_n)} = \alpha_p(y,h).$

Les directions $(y, \overline{\mathbb{E}}_p(s(y,h)))$ sont denses dans le cône de percolation. **Contribution maximale:** $\alpha_p = \sup \big\{ \alpha_p(y,h) : (y,h) \in \mathbb{Z}^d \times \mathbb{N}^* \big\}.$

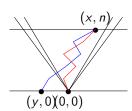
- I On se ramène à $\overline{N_n}$, qui compte les chemins qui débutent un chemin infini. **Avantage:** $\overline{N_n}$ est croissant.
- 2 Partie facile: $\lim_{n \to +\infty} \frac{1}{n} \log \overline{N_n} \ge \alpha_p$. \rightarrow monotonie de $\overline{N_n} + S_n(y, h)$ peu espacés.
- Partie difficile: $\overline{\lim_{n \to +\infty}} \frac{1}{n} \log \overline{N_n} \le \alpha_p$. \rightarrow montrer que l'essentiel des chemins passe par nos points de contrôle. \rightarrow utiliser la zone couplée



Couplage dans le cône de percolation

Un problème de chaîne de Markov

$$\begin{cases} & \xi_0 \subset \mathbb{Z}^d, \\ & \xi_n = \{x \in \mathbb{Z}^d: \ \exists x_0 \in \xi_0: (x_0, 0) \to (x, n)\}. \\ & \text{Comment } \xi_n \text{ dépend-t'il de la configuration initiale } \xi_0 ? \end{cases}$$



Zone couplée. K_n^0 est l'ensemble des points qui sont dans le même état que l'on parte de $\xi_0 = \{0\}$ ou de $\xi_0 = \mathbb{Z}^d$.

Ainsi, si $x \in K_n^0$, et $\exists y$ tel que $(y, 0) \to (x, n)$, alors $(0, 0) \to (x, n)$.

Théorème (Théorème de forme de la zone couplée)

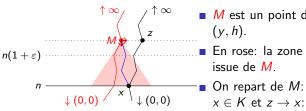
$$\overline{\mathbb{P}}_{\rho}\left(\exists N \ \forall n \geq N \quad (1-\varepsilon)A_{\mu_{\rho}} \subset \frac{(H_n \cap K_n^0) + [0,1]^d}{n} \subset (1+\varepsilon)A_{\mu_{\rho}}\right) = 1.$$

Autrement dit: un point suffisamment élevé qui est strictement à l'intérieur du cône de percolation et qui est atteint depuis un certain (x,0) est atteint depuis (0,0).

La zone couplée retournée

Montrer que toutes les contributions à \overline{N}_n sont comptées dans le **But:** $N_{x,m}$ d'un point de contrôle proche.

Le chemin noir contribue à $\overline{N}_{(x,n)}$:

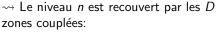


- $\uparrow \infty$ $\uparrow \infty$ $\downarrow z$ M est un point de la suite associée à (y,h). $\downarrow z$ En rose: la zone couplée retournée K
 - issue de M.

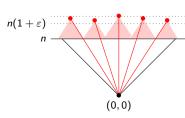
$$x \in K$$
 et $z \to x$: donc $M \to x$!

Donc
$$\overline{N}_{(x,n)} \leq \overline{N}_{M}$$
.

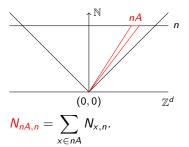
Approximation par *D* directions:



$$\rightsquigarrow \overline{\lim}_{n\to+\infty} \frac{1}{n} \log \overline{N_n} \le \alpha_p.$$



Convergence directionnelle



Theorem (Garet–Gouéré–Marchand 15)

Il existe une fonction concave $\tilde{\alpha}_p$ telle que pour les "bons" ensembles A

$$\lim_{n\to+\infty} \frac{1}{n} \log N_{nA,n} = \sup_{x\in A} \tilde{\alpha}_p(x) \quad \overline{\mathbb{P}}_p - a.s.$$

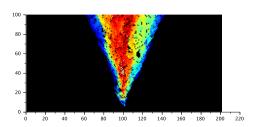


Figure: La couleur du pixel (x, k) est proportionnelle à $\frac{1}{k} \log N_{x,k}$.

Ce que dit la littérature

Rappel: sur
$$\{W > 0\}$$
: $\lim_{n \to +\infty} \frac{1}{n} \log N_n = \log((2d+1)p)$.

• il est possible que $\mathbb{P}_p(\Omega_\infty) > 0$ et $\mathbb{P}_p(W = 0) = 1$:

[dimension 1 et 2: Yoshida 08]

- il est possible que, dans la phase surcritique de percolation,
 - $\overline{\lim}_{n \to +\infty} \frac{1}{n} \log N_n < \log((2d+1)p)$ pour certains p,
 $\overline{\lim}_{n \to +\infty} \frac{1}{n} \log N_n = \log((2d+1)p)$ pour des p plus grands.

[avec de grands voisinages, et d assez grand: Lacoin 12]

Question

Comportement asymptotique de $\frac{1}{n} \log N_n$ sur l'événement de percolation ?

On note
$$\overline{\mathbb{P}}_{p}(.) = \mathbb{P}_{p}(.|\Omega_{\infty}).$$