Type I error

Type II error

Evaluation of some procedures

Multiple testing: evaluating their theoretical performance

M. Fromont*, M. Lerasle[‡], P. Reynaud-Bouret[‡]

* IRMAR, Univ. Rennes 2, [‡] CNRS, Laboratoire J.A. Dieudonné, Univ. Côte d'Azur,

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

1/31

Type I error

Type II error

Evaluation of some procedures

Type I error

Type II error

Evaluation of some procedures

Type I error

Type II error

Evaluation of some procedures

Type I error

Type II error

Evaluation of some procedures

◆□ > ◆□ > ◆目 > ◆目 > ◆□ > ◆□ >

One single test

The basic Gaussian example

For i = 1, ..., n, we observe the X_i 's such that

$$X_i = f_i + \epsilon_i,$$

with ϵ_i i.i.d. $\mathcal{N}(0, \sigma^2)$ and known σ .

Not : X and f corresponding vectors, P_f the distribution of X, $\mathcal{P} = \{P_f, f \in \mathbb{R}^n\}.$

One single test

The basic Gaussian example

For i = 1, ..., n, we observe the X_i 's such that

$$X_i = f_i + \epsilon_i,$$

with ϵ_i i.i.d. $\mathcal{N}(0, \sigma^2)$ and known σ .

Not : X and f corresponding vectors, P_f the distribution of X, $\mathcal{P} = \{P_f, f \in \mathbb{R}^n\}.$

The basic single test problem Is f = 0?

・ロト・「聞・ ・ ヨ・ ・ 聞・ ・ 日・

Type II error

One single test

The basic Gaussian example

For i = 1, ..., n, we observe the X_i 's such that

$$X_i = f_i + \epsilon_i,$$

with ϵ_i i.i.d. $\mathcal{N}(0, \sigma^2)$ and known σ .

Not : X and f corresponding vectors, P_f the distribution of X, $\mathcal{P} = \{P_f, f \in \mathbb{R}^n\}.$

The basic single test problem Test H_0 : "f = 0" versus " $f \neq 0$ "

・ロト・「聞・ ・田・ ・田・ ・日・

Type I error

Type II error

Evaluation of some procedures

One single test

The basic Gaussian example

For i = 1, ..., n, we observe the X_i 's such that

$$X_i = f_i + \epsilon_i,$$

with ϵ_i i.i.d. $\mathcal{N}(0, \sigma^2)$ and known σ .

Not : X and f corresponding vectors, P_f the distribution of X, $\mathcal{P} = \{P_f, f \in \mathbb{R}^n\}.$

The basic single test problem

 $H_0 = \{P_0\}, P$ is the distribution of the observation and test " $P \in H_0$ " versus " $P \notin H_0$ ".

a statistical test Δ, which only depends on X, with value 0 (accept H₀) or 1 (reject H₀) is said of level α ∈ (0, 1) if

Type I error $= \sup_{P \in H_0} P(\Delta = 1) \le \alpha$

a statistical test Δ, which only depends on X, with value 0 (accept H₀) or 1 (reject H₀) is said of level α ∈ (0, 1) if

Type I error
$$= \sup_{P \in H_0} P(\Delta = 1) \le \alpha$$

Example : Δ = 1_{Σ_i} x_i² > σ²c_α with c_α, chi-square quantile of order 1 − α with n degrees of freedom.

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

a statistical test Δ, which only depends on X, with value 0 (accept H₀) or 1 (reject H₀) is said of level α ∈ (0, 1) if

$$\begin{array}{l} \mathsf{Type \ I \ error} \ = \ \sup_{\pmb{P} \in \pmb{H}_0} \pmb{P}(\Delta = 1) \leq \alpha \end{array}$$

• $\Delta = \mathbf{1}_{T \ge F^{-1}(1-\alpha)}$ where *F* is the known c.d.f. of the test statistics *T* under *H*₀.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ つへぐ

a statistical test Δ, which only depends on X, with value 0 (accept H₀) or 1 (reject H₀) is said of level α ∈ (0, 1) if

$$\begin{array}{l} \mathsf{Type \ I \ error} \ = \ \sup_{\pmb{P} \in \pmb{H}_0} \pmb{P}(\Delta = 1) \leq \alpha \end{array}$$

- $\Delta = \mathbf{1}_{T \ge F^{-1}(1-\alpha)}$ where *F* is the known c.d.f. of the test statistics *T* under *H*₀.
- $\Delta = \mathbf{1}_{p \le \alpha}$, where *p* is the p-value of the previous test, that is 1 F(T) (if *F* continuous).

a statistical test Δ, which only depends on X, with value 0 (accept H₀) or 1 (reject H₀) is said of level α ∈ (0, 1) if

$$\begin{array}{l} \mathsf{Type \ I \ error} \ = \ \sup_{P \in \mathcal{H}_0} P(\Delta = 1) \leq \alpha \end{array}$$

- $\Delta = \mathbf{1}_{T \ge F^{-1}(1-\alpha)}$ where *F* is the known c.d.f. of the test statistics *T* under *H*₀.
- $\Delta = \mathbf{1}_{p \le \alpha}$, where p is the p-value of the previous test, that is 1 F(T) (if F continuous).
- NB1 : Not equivalent. OK if distribution is continuous.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

a statistical test Δ, which only depends on X, with value 0 (accept H₀) or 1 (reject H₀) is said of level α ∈ (0, 1) if

$$\begin{array}{l} \mathsf{Type \ I \ error} \ = \ \sup_{P \in \mathcal{H}_0} P(\Delta = 1) \leq \alpha \end{array}$$

- $\Delta = \mathbf{1}_{T \ge F^{-1}(1-\alpha)}$ where *F* is the known c.d.f. of the test statistics *T* under *H*₀.
- $\Delta = \mathbf{1}_{p \le \alpha}$, where p is the p-value of the previous test, that is 1 F(T) (if F continuous).
- NB1 : Not equivalent. OK if distribution is continuous.
- NB2: A p-value p always satisfies for any $P \in H_0$,

$$\forall \alpha \in [0, 1], P(p \le \alpha) \le \alpha.$$

If =, p is uniform under H_0 .

• Type II error $= \sup_{P \not\in H_0} P(\Delta = 0)$

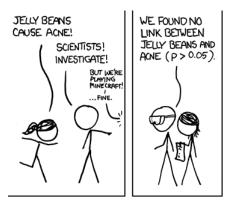
SOA

Type I error

Type II error

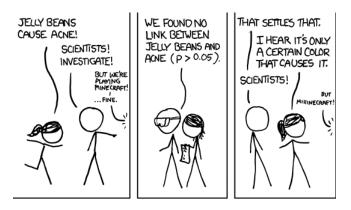
Evaluation of some procedures

An intuition of multiple testing



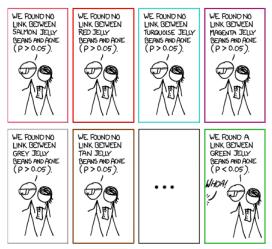
・ロト・雪・・雪・・雪・ うらぐ

An intuition of multiple testing



Type II error

An intuition of multiple testing

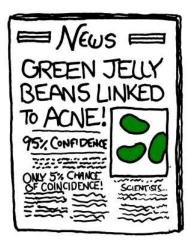


Type I error

Type II error

Evaluation of some procedures

An intuition of multiple testing



▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● の Q @

The basic multiple testing example

What are the non zero f_i ?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへ(

The basic multiple testing example

Test H_i : " $f_i = 0$ " versus " $f_i \neq 0$ " for all i

The basic multiple testing example

Let $H_i = \{P_f/f_i = 0\}$ and test " $P \in H_i$ " versus " $P \notin H_i$ " for all *i*.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ▲臣 - 釣ぬの

The basic multiple testing example

Let $H_i = \{P_f/f_i = 0\}$ and test " $P \in H_i$ " versus " $P \notin H_i$ " for all *i*.

More generally,

- there is a family \mathcal{H} of hypothesis H.
- Each hypothesis *H* is a subset of *P* the set of possible distributions.
- Outcome : a set of rejected hypothesis $\mathcal{R} \subset \mathcal{H}$, listing all the hypothesis that are not likely.
- Usually come from individual test for each H, with p-values p_H that are combined in a certain way.
- ullet We hope that ${\mathcal R}$ is close to

$$\mathcal{F}(P) = \{ H \in \mathcal{H} / P \notin H \},\$$

the set of false hypothesis.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - シスペ

Aggregated tests

The basic aggregated test example

Several tests of
$$H_0$$
: " $f = 0$ ". For instance $\Delta_i = \mathbf{1}_{|X_i| > z_{\alpha}}$

 \rightarrow How do we combine them ?

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ▼ のへの

Aggregated tests

The basic aggregated test example Several tests of H_0 : "f = 0". For instance $\Delta_i = \mathbf{1}_{|X_i| > z_{\alpha}} \dots$ \rightarrow How do we combine them ?

Link with multiple testing in general:

- $H_0 \subset \cap_{H \in \mathcal{H}} H$.
- a test per $H \in \mathcal{H}$, need to combine them to answer a single test question and control its type I error w.r.t. H_0 only.
- \bullet If multiple testing procedure gives an $\mathcal R,$ then

reject H_0 if \mathcal{R} non empty.

Aggregated tests

The basic aggregated test example Several tests of H_0 : "f = 0". For instance $\Delta_i = \mathbf{1}_{|X_i| > z_{\alpha}} \dots$ \rightarrow How do we combine them ?

Link with multiple testing in general:

- $H_0 \subset \cap_{H \in \mathcal{H}} H$.
- a test per $H \in \mathcal{H}$, need to combine them to answer a single test question and control its type I error w.r.t. H_0 only.
- If multiple testing procedure gives an \mathcal{R} , then

reject H_0 if \mathcal{R} non empty.

Control of Type II error for aggregated tests much more evolved than in multiple testing:

Our aim is to use control in aggregation to derive control in multiple testing.

First parallel between aggregation and multiple testing

Assume

- $H_0 = \cap_{H \in \mathcal{H}} H = \cap \mathcal{H}$,
- $\bullet\,$ multiple testing procedure $\to \mathcal{R}$ in the family \mathcal{H}
- reject H_0 in an aggregated fashion, i.e. if \mathcal{R} is non empty

イロン 不可と イヨン トヨー うらつ

First parallel between aggregation and multiple testing

Assume

- $H_0 = \cap_{H \in \mathcal{H}} H = \cap \mathcal{H}$,
- $\bullet\,$ multiple testing procedure $\to \mathcal{R}$ in the family \mathcal{H}
- \bullet reject ${\it H}_0$ in an aggregated fashion, i.e. if ${\cal R}$ is non empty Then

Type I error of aggregated test = $\sup_{P \in \cap \mathcal{H}} P(\mathcal{R} \neq \emptyset).$

First parallel between aggregation and multiple testing

Assume

- $H_0 = \cap_{H \in \mathcal{H}} H = \cap \mathcal{H}$,
- $\bullet\,$ multiple testing procedure $\to \mathcal{R}$ in the family \mathcal{H}

 \bullet reject ${\it H}_0$ in an aggregated fashion, i.e. if ${\cal R}$ is non empty Then

Type I error of aggregated test = $\sup_{P \in \cap \mathcal{H}} P(\mathcal{R} \neq \emptyset)$. = weak Family-Wise Error Rate of $\mathcal{R} = wFWER(\mathcal{R})$.

It wants to guarantee a very weak Type I error :

 \mathcal{R} should be empty if $\mathcal{F}(P)$ is.

・ロト ・日・・日・・日・ うくや

Family-Wise Error Rate

$$\begin{aligned} & \operatorname{FWER}(\mathcal{R}) = \sup_{P \in \mathcal{P}} P(\mathcal{R} \cap \mathcal{T}(P) \neq \emptyset). \\ & \text{with } \mathcal{T}(P) = \mathcal{F}(P)^c = \{H/P \in H\}. \end{aligned}$$

- much stronger: control for all P and not just $P \in \cap \mathcal{H}$.
- if $FWER(\mathcal{R}) \leq \alpha$, $\mathcal{R} \subset \mathcal{F}(P)$ very likely.
- does not say anything about $\mathcal{R} \simeq \mathcal{F}(P) \rightsquigarrow$ Type II error.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - シスペ

Bonferroni

Perform a test Δ_H at level $\alpha/\#\mathcal{H}$ for each $H \in \mathcal{H}$, $\mathcal{R} = \{H \mid \Delta_H \text{ rejects }\}$ is the set of rejected hypotheses.

$$egin{aligned} & \mathcal{P}(\mathcal{R}\cap\mathcal{T}(\mathcal{P})
eq\emptyset) = \mathcal{P}(\exists \mathcal{H}\in\mathcal{T}(\mathcal{P}),\Delta_{\mathcal{H}}=1) \ & \leq \sum_{\mathcal{H}\in\mathcal{T}(\mathcal{P})}\mathcal{P}(\Delta_{\mathcal{H}}=1) \leq rac{\#\mathcal{T}(\mathcal{P})}{\#\mathcal{H}}lpha \leq lpha. \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Bonferroni

Perform a test Δ_H at level $\alpha/\#\mathcal{H}$ for each $H \in \mathcal{H}$, $\mathcal{R} = \{H \mid \Delta_H \text{ rejects }\}$ is the set of rejected hypotheses.

- very conservative but always work.
- (almost) equivalent to say that one rejects all the H such that its p-value p_H ≤ α/#H.

Bonferroni

Perform a test Δ_H at level $\alpha/\#\mathcal{H}$ for each $H \in \mathcal{H}$, $\mathcal{R} = \{H \mid \Delta_H \text{ rejects }\}$ is the set of rejected hypotheses.

Min-p

If for all $\mathcal{G} \subset \mathcal{H}$, the c.d.f. $F_{\mathcal{G}}$ of min_{$H \in \mathcal{G}$} p_H does not depend on the $P \in \cap \mathcal{G}$, and if one knows $F_{\mathcal{H}}$, then

$$\mathcal{R} = \{H/p_H \leq F_{\mathcal{H}}^{-1}(\alpha)\}.$$

Bonferroni

Perform a test Δ_H at level $\alpha/\#\mathcal{H}$ for each $H \in \mathcal{H}$, $\mathcal{R} = \{H \mid \Delta_H \text{ rejects }\}$ is the set of rejected hypotheses.

Min-p

If for all $\mathcal{G} \subset \mathcal{H}$, the c.d.f. $F_{\mathcal{G}}$ of $\min_{H \in \mathcal{G}} p_H$ does not depend on the $P \in \cap \mathcal{G}$, and if one knows $F_{\mathcal{H}}$, then

$$\mathcal{R} = \{H/p_H \leq F_{\mathcal{H}}^{-1}(\alpha)\}.$$

$$P(\mathcal{R} \cap \mathcal{T}(P) \neq \emptyset) = P(\exists H \in \mathcal{T}(P), p_H \leq F_{\mathcal{H}}^{-1}(\alpha))$$

= $P(\min_{H \in \mathcal{T}(P)} p_H \leq F_{\mathcal{H}}^{-1}(\alpha))$
= $F_{\mathcal{T}(P)}(F_{\mathcal{H}}^{-1}(\alpha)) \leq F_{\mathcal{H}}(F_{\mathcal{H}}^{-1}(\alpha)) \leq \alpha.$

Bonferroni

Perform a test Δ_H at level $\alpha/\#\mathcal{H}$ for each $H \in \mathcal{H}$, $\mathcal{R} = \{H \mid \Delta_H \text{ rejects }\}$ is the set of rejected hypotheses.

Min-p

If for all $\mathcal{G} \subset \mathcal{H}$, the c.d.f. $F_{\mathcal{G}}$ of $\min_{H \in \mathcal{G}} p_H$ does not depend on the $P \in \cap \mathcal{G}$, and if one knows $F_{\mathcal{H}}$, then

$$\mathcal{R} = \{H/p_H \leq F_{\mathcal{H}}^{-1}(\alpha)\}.$$

- much less conservative and assumptions quite easy fulfilled in classical settings.
- aggregated version exists (with test statistics and not p-values) ...
- if one only knows that F_H does not depend on P ∈ H, control of the wFWER only a priori.

Bonferroni

Perform a test Δ_H at level $\alpha/\#\mathcal{H}$ for each $H \in \mathcal{H}$, $\mathcal{R} = \{H \mid \Delta_H \text{ rejects }\}$ is the set of rejected hypotheses.

Min-p

If for all $\mathcal{G} \subset \mathcal{H}$, the c.d.f. $F_{\mathcal{G}}$ of $\min_{H \in \mathcal{G}} p_H$ does not depend on the $P \in \cap \mathcal{G}$, and if one knows $F_{\mathcal{H}}$, then

$$\mathcal{R} = \{H/p_H \leq F_{\mathcal{H}}^{-1}(\alpha)\}.$$

Step-Down

For both procedures, and many more, possible to reject a first set \mathcal{R}_1 , do as if $\mathcal{H}_{new} = \mathcal{H} \setminus \mathcal{R}_1$ and iterate until no rejection anymore.

False Discovery Rate

$$\mathsf{FDR}(\mathcal{R}) = \left(\sup_{P \in \mathcal{H}}\right) \mathbb{E}_{P} \left[\frac{\#\mathcal{R} \cap \mathcal{T}(P)}{\#\mathcal{R}}\right],$$

with convention 0/0 = 0.

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ●

False Discovery Rate

$$\mathsf{FDR}(\mathcal{R}) = \left(\sup_{P \in \mathcal{H}}\right) \mathbb{E}_{P} \left[\frac{\#\mathcal{R} \cap \mathcal{T}(P)}{\#\mathcal{R}}\right],$$

with convention 0/0 = 0.

• if $\mathcal{F}(P) = \emptyset$, one "recovers" wFWER, i.e.

$$w \text{FWER}(\mathcal{R}) = \sup_{P \in \cap \mathcal{H}} P(\mathcal{R} \neq \emptyset) = \sup_{P \in \cap \mathcal{H}} \mathbb{E}_P \left[\frac{\#\mathcal{R} \cap \mathcal{T}(P)}{\#\mathcal{R}} \right].$$

• when $\mathcal{F}(P) \neq \emptyset$, less conservative :

 $FDR(\mathcal{R}) \leq FWER(\mathcal{R}).$

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ >

Benjamini and Hochberg (BH) procedure

An exponentially increasing use and citations in very different domains since its parution in 1995.

- **()** sort the p_H : $p_{(1)} \le p_{(2)} \le$
- **2** (Step-up algorithm) find the largest k, denoted \hat{k} , such that

$$p_{(k)} \leq \frac{k}{\#\mathcal{H}}\alpha.$$

・ロト ・四ト ・日・ ・日・ ・日・ うらぐ

Benjamini and Hochberg (BH) procedure

An exponentially increasing use and citations in very different domains since its parution in 1995.

1 sort the
$$p_H$$
: $p_{(1)} \le p_{(2)} \le ...$

2 (Step-up algorithm) find the largest k, denoted \hat{k} , such that

$$p_{(k)} \leq \frac{k}{\#\mathcal{H}}\alpha.$$

$\mathsf{FDR}(\mathcal{R}) \leq \alpha$ if

- the p_H are independent for all $H \in \mathcal{T}(P)$
- or PRDS property (positive regression dependency on each one from a subset): for Gaussian variables, positively correlated.

Benjamini and Hochberg (BH) procedure

An exponentially increasing use and citations in very different domains since its parution in 1995.

1 sort the
$$p_H$$
: $p_{(1)} \le p_{(2)} \le ...$

2 (Step-up algorithm) find the largest k, denoted \hat{k} , such that

$$p_{(k)} \leq \frac{k}{\#\mathcal{H}}\alpha.$$

$\mathsf{FDR}(\mathcal{R}) \leq \alpha$ if

- the p_H are independent for all $H \in \mathcal{T}(P)$
- or PRDS property (positive regression dependency on each one from a subset): for Gaussian variables, positively correlated.
 Many variants exist... Most of the time one cannot prove the second original BH works, but works in practice.

Many other Type I errors ...

- k FWER, PFER, FDP ...
- influence of the correlation structure, continuous versions etc
- for more, Etienne Roquain's Habilitation manuscript, or his review for SfdS journal.
- see also, Goeman and Solari (AoS 2010)

... Huge amount of papers interested in controlling that \mathcal{R} does not intersect "too much" with $\mathcal{T}(P)$ (Type I error).

What about Type II errors ?

How do we measure that \mathcal{R} is indeed a good approximation of $\mathcal{F}(P)$?

- the aggregated version (see also Romano, Shaikh and Wolf 2011)
 - transform \mathcal{R} into a test of $\cap \mathcal{H}$ (rejected if $\mathcal{R} \neq \emptyset$)
 - say that the power of such test, i.e. P(R ≠ ∅) if P ∉ ∩H tends to 1.
- $P(\mathcal{R} \cap \mathcal{F}(P) \neq \emptyset)$ tends to 1 (Lehmann, Romano and Shaffer 2005).
- see \mathcal{R} as a classification rule and measure its performance as a classifier (Neuvial, Roquain 2012)

Separation rates for a single test

Ingster (1993,...), Baraud (2005)

- Very efficient tool in large dimension or nonparametric problems to understand how much tests are powerful
- the "equivalent" of the risk theory in estimation
- give "rates" ~→ minimax theory
- depends on the smoothness of the class of alternatives

Separation rates for a single test

Ingster (1993,...), Baraud (2005)

- Very efficient tool in large dimension or nonparametric problems to understand how much tests are powerful
- the "equivalent" of the risk theory in estimation
- give "rates" ~→ minimax theory

• depends on the smoothness of the class of alternatives Given a distance d on \mathcal{P} , α, β in (0, 1) and a smoothness class $\mathcal{Q} \subset \mathcal{P}$,

Uniform separation rate

For a level α test Δ of H_0 ,

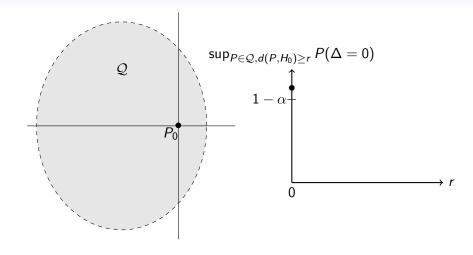
$$\operatorname{SR}_d^\beta(\Delta,\mathcal{Q},H_0) = \inf\{r > 0 / \sup_{P \in \mathcal{Q}/d(P,H_0) \ge r} P(\Delta=0) \le \beta\}.$$

Minimax separation rate

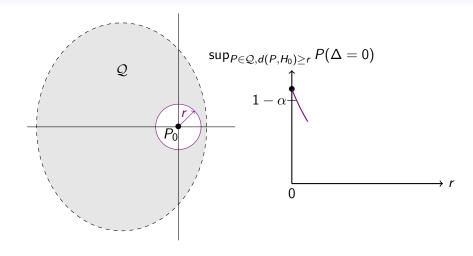
$$\textit{mSR}^{\alpha,\beta}_{\textit{d}}(\mathcal{Q},\textit{H}_{0}) = \inf_{\Delta_{\textit{with Type I error}} \leq \alpha} \mathrm{SR}^{\beta}_{\textit{d}}(\Delta,\mathcal{Q},\textit{H}_{0}).$$

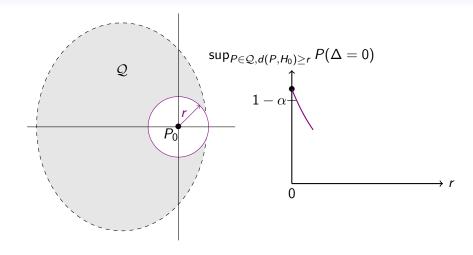
596

Pr			

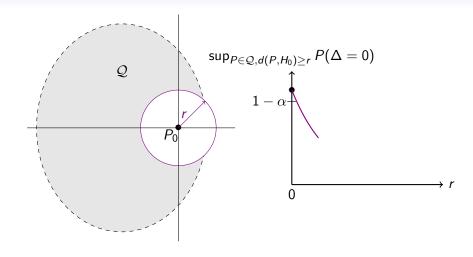


◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ >

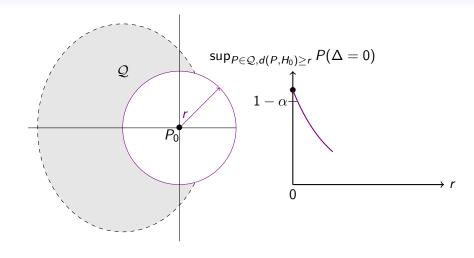




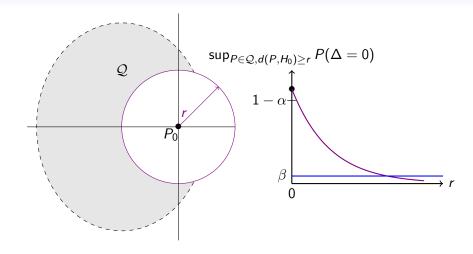
・ロト ・日・・日・・日・・ つくの



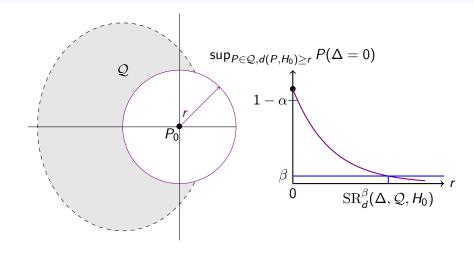
▲ロト ▲団ト ▲目ト ▲目ト 三目 - 釣A@



◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ >



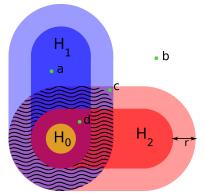
▲ロト ▲団ト ▲目ト ▲目ト 三目 - 釣A@



◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ >

Problematic

Multiple testing version $d(P, \cap H) \ge r$ (single) vs $\mathcal{F}_r(P) = \{H/d(P, H) \ge r\}$ (multiple)



a: $\mathcal{T}(P) = \{H_1\}$ and $\mathcal{F}(P) = \mathcal{F}_r(P) = \{H_2\}$. b: $\mathcal{T}(P) = \emptyset$ and $\mathcal{F}(P) = \mathcal{F}_r(P) = \{H_1, H_2\}$. c: $\mathcal{T}(P) = \emptyset$, $\mathcal{F}(P) = \{H_1, H_2\}$, $\mathcal{F}_r(P) = \emptyset$, $d(P, H_1 \cap H_2) \ge r$. d: $\mathcal{T}(P) = \{H_1, H_2\}$ and $\mathcal{F}(P) = \mathcal{F}_r(P) = \emptyset$, $P \notin H_0$.

Family-Wise Separation Rates (weak)

Weak Family Wise Separation Rate

$$w \text{FWSR}^{\beta}_{d}(\mathcal{R}, \mathcal{Q}) = \inf\{r > 0 / \sup_{P \in \mathcal{Q} / \mathcal{F}_{r}(P) \neq \emptyset} P(\mathcal{R} = \emptyset) \leq \beta\}$$

▲□▶ ▲□▶ ▲ ≧▶ ▲ ≧▶ → ≧ - 釣ゑ()

Family-Wise Separation Rates (weak)

Weak Family Wise Separation Rate

$$w \text{FWSR}^{\beta}_{d}(\mathcal{R}, \mathcal{Q}) = \inf\{r > 0 / \sup_{P \in \mathcal{Q} / \mathcal{F}_{r}(P) \neq \emptyset} P(\mathcal{R} = \emptyset) \leq \beta\}$$

Proposition

If $\Delta(\mathcal{R})$ is the aggregated test associated to \mathcal{R} ,

$$\mathrm{wFWSR}^{eta}_d(\mathcal{R},\mathcal{Q}) \leq \mathrm{SR}^{eta}_d(\Delta(\mathcal{R}),\mathcal{Q},\cap\mathcal{H}).$$

Moreover, if

 $(\mathcal{A}) \ \forall r > 0, \ d(P, \cap \mathcal{H}) \geq r \Leftrightarrow \mathcal{F}_r(P) \neq \emptyset,$

then $w \mathrm{FWSR}^{\beta}_{d}(\mathcal{R},\mathcal{Q}) = \mathrm{SR}^{\beta}_{d}(\Delta(\mathcal{R}),\mathcal{Q},\cap\mathcal{H}).$

- (\mathcal{A}) true for closed family of hypotheses (in the sense of intersection).

- can also change the metric

Family-Wise Separation Rates (strong)

Family Wise Separation Rate

$\mathrm{FWSR}^{\beta}_{d}(\mathcal{R},\mathcal{Q}) = \inf\{r > 0/\sup_{P \in \mathcal{Q}} P(\mathcal{F}_{r}(P) \cap (\mathcal{H} \setminus \mathcal{R}) \neq \emptyset) \leq \beta\}$

・ロ・・日・・日・・日・ うくの

Family-Wise Separation Rates (strong)

Family Wise Separation Rate

 $\mathrm{FWSR}^{\beta}_{d}(\mathcal{R},\mathcal{Q}) = \inf\{r > 0/\sup_{P \in \mathcal{Q}} P(\mathcal{F}_{r}(P) \cap (\mathcal{H} \setminus \mathcal{R}) \neq \emptyset) \leq \beta\}$

NB : Controlled $\rm FWER$ and $\rm FWSR$ guarantee that with large probability, for r larger than the $\rm FWSR$

 $\mathcal{F}_r(P) \subset \mathcal{R} \subset \mathcal{F}(P).$

- Never perfect with large probability in general : one cannot detect if too close.
- FWSR answers : how far away should *P* be from the *H*'s so we can find those *H*'s ?

Proposition

$$w \mathrm{FWSR}^{eta}_{d}(\mathcal{R},\mathcal{Q}) \leq \mathrm{FWSR}^{eta}_{d}(\mathcal{R},\mathcal{Q})$$

920

Problematic

Type I error

Type II error

Evaluation of some procedures

A minimax theory

Minimax Family-Wise Separation Rate

$$m \operatorname{FWSR}_{d}^{\alpha,\beta}(\mathcal{Q}) = \inf_{\mathcal{R} \ / \ \operatorname{FWER}(\mathcal{R}) \leq \alpha} \operatorname{FWSR}_{d}^{\beta}(\mathcal{R},\mathcal{Q}).$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - 約9.0

Problematic

Type I error

Type II error

Evaluation of some procedures

A minimax theory

Minimax Family-Wise Separation Rate

$$m \mathrm{FWSR}^{\alpha,\beta}_{d}(\mathcal{Q}) = \inf_{\mathcal{R} \ / \ \mathrm{FWER}(\mathcal{R}) \leq \alpha} \mathrm{FWSR}^{\beta}_{d}(\mathcal{R},\mathcal{Q}).$$

Theorem

If (A) holds, then
$$m \mathrm{FWSR}_d^{\alpha,\beta}(\mathcal{Q}) \geq m \mathrm{SR}_d^{\alpha,\beta}(\mathcal{Q},\cap\mathcal{H}).$$

- \hookrightarrow natural idea that testing multiple hypotheses is more difficult than testing a single hypothesis.
- $\hookrightarrow \text{ directly gives (tight) lower bounds for the minimax Family Wise} \\ \text{Separation Rate over some } \mathcal{Q}.$

 ${}^{\textcircled{D}}$ (\mathcal{A}) is necessary! \rightsquigarrow change of metric to make it work.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

The classical Gaussian Example

The basic Gaussian example

For i = 1, ..., n, we observe the X_i 's such that

$$X_i = f_i + \epsilon_i,$$

with ϵ_i i.i.d. $\mathcal{N}(0, \sigma^2)$ and known σ .

Not : X and f corresponding vectors, P_f the distribution of X, $\mathcal{P} = \{P_f, f \in \mathbb{R}^n\}.$

・ロ・・聞・・聞・・聞・ しょうくの

The classical Gaussian Example

The basic Gaussian example

For i = 1, ..., n, we observe the X_i 's such that

$$X_i = f_i + \epsilon_i,$$

with ϵ_i i.i.d. $\mathcal{N}(0, \sigma^2)$ and known σ .

Not : X and f corresponding vectors, P_f the distribution of X, $\mathcal{P} = \{P_f, f \in \mathbb{R}^n\}.$

- d_s is the ℓ^s distance on the f's
- $Q = P_k = \{P_f / \#\{i, f_i \neq 0\} \le k\}$: smoothness= sparsity (here)
- $H_0 = \{P_0\}$
- $m \operatorname{SR}_{d_2}^{\alpha,\beta}(\mathcal{P}_k, H_0) \sim \sigma \sqrt{k \ln(n)} \text{ if } k \leq n^{\gamma} \text{ with } \gamma \in (0, 1/2)$ (Baraud 2005)

Some applications (1)

- If $H_i = \{P_f/f_i = 0\} \rightsquigarrow \mathcal{H}$,
 - $m \text{FWSR}_{d_2}^{\alpha,\beta}(\mathcal{P}_k) \sim \sigma \sqrt{\ln(n)}$ for all k = 1, ..., n.
 - much smaller than $m SR_{d_2}^{\alpha,\beta}(\mathcal{P}_k, H_0)$
 - the "good" metric is d_{∞} , which guarantees (\mathcal{A}).
 - achieved by Bonferroni, Min-p and their step-down versions based on single tests of the form $\mathbf{1}_{|X_i|/\sigma>...}$
 - methods for *m*FWSR have nothing to do with the methods used to achieve *m*SR

Some applications (2)

If $H_i = \{P_f/f_1 = ... = f_i = 0\} \rightsquigarrow \mathcal{H}$ (closed family),

• $m \text{FWSR}_{d_s}^{\alpha,\beta}(\mathcal{P}_k) \sim \sigma \sqrt{k \ln(n)}$

• achieved by variant of the closure method (Romano, Wolf 2005), with levels corrected in a Bonferroni fashion.

For more dependent structure, one can prove that Min-p version are strictly better in terms of rates Bonferroni like methods.

Conclusion

- many Type I errors for multiple testing in the literature
- few Type II errors studies
- we propose to use separation rates in a FamilyWise sense to better understand procedures guaranteeing FWER
- not possible right now to see the gain with step-down (maybe the constants ?)
- nothing yet for FDR

Problematic

Type I error

Type II error

Evaluation of some procedures

Thank you !

Fromont, M. Lerasle, M., Reynaud-Bouret, P. Family Wise Separation Rates for multiple testing, to appear in Annals of Statistics

◆□> ◆□> ◆□> ◆□> ◆□> ◆□> ◆□>

31/31