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One single test

The basic Gaussian example

For i = 1, ..., n, we observe the Xi ’s such that

Xi = fi + ǫi ,

with ǫi i.i.d. N (0, σ2) and known σ.

Not : X and f corresponding vectors, Pf the distribution of X ,

P = {Pf , f ∈ R
n}.
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One single test

The basic Gaussian example

For i = 1, ..., n, we observe the Xi ’s such that

Xi = fi + ǫi ,

with ǫi i.i.d. N (0, σ2) and known σ.

Not : X and f corresponding vectors, Pf the distribution of X ,

P = {Pf , f ∈ R
n}.

The basic single test problem

H0 = {P0}, P is the distribution of the observation and test
”P ∈ H0” versus ”P 6∈ H0”.
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Classical solution

a statistical test ∆, which only depends on X , with value 0
(accept H0) or 1 (reject H0) is said of level α ∈ (0, 1) if

Type I error = sup
P∈H0

P(∆ = 1) ≤ α
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Classical solution

a statistical test ∆, which only depends on X , with value 0
(accept H0) or 1 (reject H0) is said of level α ∈ (0, 1) if

Type I error = sup
P∈H0

P(∆ = 1) ≤ α

Example : ∆ = 1∑
i X

2
i
>σ2cα

with cα, chi-square quantile of

order 1− α with n degrees of freedom.
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a statistical test ∆, which only depends on X , with value 0
(accept H0) or 1 (reject H0) is said of level α ∈ (0, 1) if
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∆ = 1T≥F−1(1−α) where F is the known c.d.f. of the test
statistics T under H0.
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Classical solution

a statistical test ∆, which only depends on X , with value 0
(accept H0) or 1 (reject H0) is said of level α ∈ (0, 1) if

Type I error = sup
P∈H0

P(∆ = 1) ≤ α

∆ = 1T≥F−1(1−α) where F is the known c.d.f. of the test
statistics T under H0.

∆ = 1p≤α, where p is the p-value of the previous test, that is
1− F (T ) (if F continuous).

NB1 : Not equivalent. OK if distribution is continuous.

NB2: A p-value p always satisfies for any P ∈ H0,

∀α ∈ [0, 1],P(p ≤ α) ≤ α.

If =, p is uniform under H0.

Type II error = supP 6∈H0
P(∆ = 0)
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Multiple testing (more seriously)

The basic multiple testing example

What are the non zero fi?
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Multiple testing (more seriously)

The basic multiple testing example

Let Hi = {Pf /fi = 0} and test ”P ∈ Hi” versus ”P 6∈ Hi” for all i .

More generally,

there is a family H of hypothesis H.

Each hypothesis H is a subset of P the set of possible
distributions.

Outcome : a set of rejected hypothesis R ⊂ H, listing all the
hypothesis that are not likely.

Usually come from individual test for each H, with p-values
pH that are combined in a certain way.

We hope that R is close to

F(P) = {H ∈ H/P 6∈ H},

the set of false hypothesis.
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Aggregated tests

The basic aggregated test example

Several tests of H0: ”f = 0”. For instance ∆i = 1|Xi |>zα....
→ How do we combine them ?
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Aggregated tests

The basic aggregated test example

Several tests of H0: ”f = 0”. For instance ∆i = 1|Xi |>zα....
→ How do we combine them ?

Link with multiple testing in general:

H0 ⊂ ∩H∈HH.

a test per H ∈ H, need to combine them to answer a single
test question and control its type I error w.r.t. H0 only.

If multiple testing procedure gives an R, then

reject H0 if R non empty.
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Aggregated tests

The basic aggregated test example

Several tests of H0: ”f = 0”. For instance ∆i = 1|Xi |>zα....
→ How do we combine them ?

Link with multiple testing in general:

H0 ⊂ ∩H∈HH.

a test per H ∈ H, need to combine them to answer a single
test question and control its type I error w.r.t. H0 only.

If multiple testing procedure gives an R, then

reject H0 if R non empty.

Control of Type II error for aggregated tests much more evolved
than in multiple testing:

Our aim is to use control in aggregation to derive control in
multiple testing.
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First parallel between aggregation and multiple testing

Assume

H0 = ∩H∈HH = ∩H,

multiple testing procedure → R in the family H

reject H0 in an aggregated fashion, i.e. if R is non empty
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First parallel between aggregation and multiple testing

Assume

H0 = ∩H∈HH = ∩H,

multiple testing procedure → R in the family H

reject H0 in an aggregated fashion, i.e. if R is non empty

Then

Type I error of aggregated test = sup
P∈∩H

P(R 6= ∅).

= weak Family-Wise Error Rate of R = wFWER(R).

It wants to guarantee a very weak Type I error :

R should be empty if F(P) is.
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Family-Wise Error Rate

FWER(R) = sup
P∈P

P(R∩ T (P) 6= ∅).

with T (P) = F(P)c = {H/P ∈ H}.

much stronger: control for all P and not just P ∈ ∩H.

if FWER(R) ≤ α, R ⊂ F(P) very likely.

does not say anything about R ≃ F(P) Type II error.
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Some procedures with controlled FWER

Bonferroni

Perform a test ∆H at level α/#H for each H ∈ H,
R = {H / ∆H rejects } is the set of rejected hypotheses.

P(R∩ T (P) 6= ∅) = P(∃H ∈ T (P),∆H = 1)

≤
∑

H∈T (P)

P(∆H = 1) ≤
#T (P)

#H
α ≤ α.
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Some procedures with controlled FWER

Bonferroni

Perform a test ∆H at level α/#H for each H ∈ H,
R = {H / ∆H rejects } is the set of rejected hypotheses.

very conservative but always work.

(almost) equivalent to say that one rejects all the H such that
its p-value pH ≤ α/#H.
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Some procedures with controlled FWER

Bonferroni

Perform a test ∆H at level α/#H for each H ∈ H,
R = {H / ∆H rejects } is the set of rejected hypotheses.

Min-p

If for all G ⊂ H, the c.d.f. FG of minH∈G pH does not depend on
the P ∈ ∩G, and if one knows FH, then

R = {H/pH ≤ F−1
H (α)}.
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Some procedures with controlled FWER

Bonferroni

Perform a test ∆H at level α/#H for each H ∈ H,
R = {H / ∆H rejects } is the set of rejected hypotheses.

Min-p

If for all G ⊂ H, the c.d.f. FG of minH∈G pH does not depend on
the P ∈ ∩G, and if one knows FH, then

R = {H/pH ≤ F−1
H (α)}.

P(R∩ T (P) 6= ∅) = P(∃H ∈ T (P), pH ≤ F−1
H (α))

= P( min
H∈T (P)

pH ≤ F−1
H (α))

= FT (P)(F
−1
H (α)) ≤ FH(F

−1
H (α)) ≤ α.

10/31



Problematic Type I error Type II error Evaluation of some procedures

Some procedures with controlled FWER

Bonferroni

Perform a test ∆H at level α/#H for each H ∈ H,
R = {H / ∆H rejects } is the set of rejected hypotheses.

Min-p

If for all G ⊂ H, the c.d.f. FG of minH∈G pH does not depend on
the P ∈ ∩G, and if one knows FH, then

R = {H/pH ≤ F−1
H (α)}.

much less conservative and assumptions quite easy fulfilled in
classical settings.
aggregated version exists (with test statistics and not
p-values) ...
if one only knows that FH does not depend on P ∈ H, control
of the wFWER only a priori.
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Some procedures with controlled FWER

Bonferroni

Perform a test ∆H at level α/#H for each H ∈ H,
R = {H / ∆H rejects } is the set of rejected hypotheses.

Min-p

If for all G ⊂ H, the c.d.f. FG of minH∈G pH does not depend on
the P ∈ ∩G, and if one knows FH, then

R = {H/pH ≤ F−1
H (α)}.

Step-Down

For both procedures, and many more, possible to reject a first set
R1, do as if Hnew = H\R1 and iterate until no rejection anymore.
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False Discovery Rate

FDR(R) =

(

sup
P∈H

)

EP

[

#R∩ T (P)

#R

]

,

with convention 0/0 = 0.
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False Discovery Rate

FDR(R) =

(

sup
P∈H

)

EP

[

#R∩ T (P)

#R

]

,

with convention 0/0 = 0.

if F(P) = ∅, one ”recovers” wFWER, i.e.

wFWER(R) = sup
P∈∩H

P(R 6= ∅) = sup
P∈∩H

EP

[

#R∩ T (P)

#R

]

.

when F(P) 6= ∅, less conservative :

FDR(R) ≤ FWER(R).
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Benjamini and Hochberg (BH) procedure
An exponentially increasing use and citations in very different
domains since its parution in 1995.

1 sort the pH : p(1) ≤ p(2) ≤ ....

2 (Step-up algorithm) find the largest k , denoted k̂ , such that

p(k) ≤
k

#H
α.

3 R = {H/pH ≤ p(k̂)}.
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domains since its parution in 1995.

1 sort the pH : p(1) ≤ p(2) ≤ ....

2 (Step-up algorithm) find the largest k , denoted k̂ , such that

p(k) ≤
k

#H
α.

3 R = {H/pH ≤ p(k̂)}.

FDR(R) ≤ α if

the pH are independent for all H ∈ T (P)
or PRDS property (positive regression dependency on each one
from a subset): for Gaussian variables, positively correlated.
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Benjamini and Hochberg (BH) procedure
An exponentially increasing use and citations in very different
domains since its parution in 1995.

1 sort the pH : p(1) ≤ p(2) ≤ ....

2 (Step-up algorithm) find the largest k , denoted k̂ , such that

p(k) ≤
k

#H
α.

3 R = {H/pH ≤ p(k̂)}.

FDR(R) ≤ α if

the pH are independent for all H ∈ T (P)
or PRDS property (positive regression dependency on each one
from a subset): for Gaussian variables, positively correlated.

Many variants exist... Most of the time one cannot prove the
original BH works, but works in practice.
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Many other Type I errors ...

k − FWER, PFER, FDP ...

influence of the correlation structure, continuous versions etc

for more, Etienne Roquain’s Habilitation manuscript, or his
review for SfdS journal.

see also, Goeman and Solari (AoS 2010)

... Huge amount of papers interested in controlling that R does
not intersect ”too much” with T (P) (Type I error).
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What about Type II errors ?

How do we measure that R is indeed a good approximation of
F(P) ?

the aggregated version (see also Romano, Shaikh and Wolf
2011)

transform R into a test of ∩H (rejected if R 6= ∅)
say that the power of such test, i.e. P(R 6= ∅) if P 6∈ ∩H
tends to 1.

P(R∩ F(P) 6= ∅) tends to 1 (Lehmann, Romano and Shaffer
2005).

see R as a classification rule and measure its performance as
a classifier (Neuvial, Roquain 2012)
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Separation rates for a single test
Ingster (1993,...), Baraud (2005)

Very efficient tool in large dimension or nonparametric
problems to understand how much tests are powerful
the ”equivalent” of the risk theory in estimation
give ”rates”  minimax theory
depends on the smoothness of the class of alternatives
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Separation rates for a single test
Ingster (1993,...), Baraud (2005)

Very efficient tool in large dimension or nonparametric
problems to understand how much tests are powerful
the ”equivalent” of the risk theory in estimation
give ”rates”  minimax theory
depends on the smoothness of the class of alternatives

Given a distance d on P, α, β in (0, 1) and a smoothness class
Q ⊂ P,

Uniform separation rate

For a level α test ∆ of H0,

SR
β
d (∆,Q,H0) = inf{r > 0/ sup

P∈Q/d(P,H0)≥r

P(∆ = 0) ≤ β}.

Minimax separation rate

mSR
α,β
d

(Q,H0) = inf∆with Type I error≤α SR
β
d
(∆,Q,H0).
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•
P0

Q
•
−1− α

supP∈Q,d(P,H0)≥r P(∆ = 0)

r
0
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−1− α
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r
0
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•
P0

Q

r

•
−1− α

supP∈Q,d(P,H0)≥r P(∆ = 0)

r
0

β
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•
P0

Q

r

•
−1− α

supP∈Q,d(P,H0)≥r P(∆ = 0)

r
0

β

SR
β
d (∆,Q,H0)
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Multiple testing version
d(P ,∩H) ≥ r (single) vs Fr (P) = {H/d(P ,H) ≥ r} (multiple)

a: T (P) = {H1} and F(P) = Fr (P) = {H2}.
b: T (P) = ∅ and F(P) = Fr (P) = {H1,H2}.
c : T (P) = ∅, F(P) = {H1,H2}, Fr (P) = ∅, d(P ,H1 ∩ H2) ≥ r .
d : T (P) = {H1,H2} and F(P) = Fr (P) = ∅, P 6∈ H0.
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Family-Wise Separation Rates (weak)

Weak Family Wise Separation Rate

wFWSR
β
d
(R,Q)=inf{r >0/ sup

P∈Q/Fr (P)6=∅
P(R= ∅)≤ β}
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Family-Wise Separation Rates (weak)

Weak Family Wise Separation Rate

wFWSR
β
d
(R,Q)=inf{r >0/ sup

P∈Q/Fr (P)6=∅
P(R= ∅)≤ β}

Proposition

If ∆(R) is the aggregated test associated to R,

wFWSR
β
d (R,Q) ≤ SR

β
d (∆(R),Q,∩H).

Moreover, if

(A) ∀r > 0, d(P ,∩H) ≥ r ⇔ Fr (P) 6= ∅,

then wFWSR
β
d
(R,Q) = SR

β
d
(∆(R),Q,∩H).

- (A) true for closed family of hypotheses (in the sense of
intersection).
- can also change the metric 24/31
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Family-Wise Separation Rates (strong)

Family Wise Separation Rate

FWSR
β
d(R,Q) = inf{r > 0/ sup

P∈Q
P(Fr (P) ∩ (H \R) 6= ∅)≤ β}
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Family-Wise Separation Rates (strong)

Family Wise Separation Rate

FWSR
β
d(R,Q) = inf{r > 0/ sup

P∈Q
P(Fr (P) ∩ (H \R) 6= ∅)≤ β}

NB : Controlled FWER and FWSR guarantee that with large
probability, for r larger than the FWSR

Fr (P) ⊂ R ⊂ F(P).

Never perfect with large probability in general : one cannot
detect if too close.
FWSR answers : how far away should P be from the H’s so
we can find those H’s ?

Proposition

wFWSR
β
d (R,Q) ≤ FWSR

β
d (R,Q)
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A minimax theory

Minimax Family-Wise Separation Rate

mFWSR
α,β
d

(Q) = inf
R / FWER(R)≤α

FWSR
β
d
(R,Q).
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A minimax theory

Minimax Family-Wise Separation Rate

mFWSR
α,β
d

(Q) = inf
R / FWER(R)≤α

FWSR
β
d
(R,Q).

Theorem

If (A) holds, then mFWSR
α,β
d (Q) ≥ mSR

α,β
d (Q,∩H).

→֒ natural idea that testing multiple hypotheses is more difficult
than testing a single hypothesis.

→֒ directly gives (tight) lower bounds for the minimax Family Wise
Separation Rate over some Q.

! (A) is necessary!  change of metric to make it work.
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The classical Gaussian Example

The basic Gaussian example

For i = 1, ..., n, we observe the Xi ’s such that

Xi = fi + ǫi ,

with ǫi i.i.d. N (0, σ2) and known σ.

Not : X and f corresponding vectors, Pf the distribution of X ,

P = {Pf , f ∈ R
n}.
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The classical Gaussian Example

The basic Gaussian example

For i = 1, ..., n, we observe the Xi ’s such that

Xi = fi + ǫi ,

with ǫi i.i.d. N (0, σ2) and known σ.

Not : X and f corresponding vectors, Pf the distribution of X ,

P = {Pf , f ∈ R
n}.

ds is the ℓs distance on the f ’s

Q = Pk = {Pf /#{i , fi 6= 0} ≤ k} : smoothness= sparsity
(here)

H0 = {P0}

mSR
α,β
d2

(Pk ,H0) ∼ σ
√

k ln(n) if k ≤ nγ with γ ∈ (0, 1/2)
(Baraud 2005)
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Some applications (1)

If Hi = {Pf /fi = 0}  H,

mFWSR
α,β
d2

(Pk) ∼ σ
√

ln(n) for all k = 1, ..., n.

much smaller than mSR
α,β
d2

(Pk ,H0)

the ”good” metric is d∞, which guarantees (A).

achieved by Bonferroni, Min-p and their step-down versions
based on single tests of the form 1|Xi |/σ>...

methods for mFWSR have nothing to do with the methods
used to achieve mSR
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Some applications (2)

If Hi = {Pf /f1 = ... = fi = 0}  H (closed family),

mFWSR
α,β
ds

(Pk) ∼ σ
√

k ln(n)

achieved by variant of the closure method (Romano, Wolf
2005), with levels corrected in a Bonferroni fashion.

For more dependent structure, one can prove that Min-p version
are strictly better in terms of rates Bonferroni like methods.
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Conclusion

many Type I errors for multiple testing in the literature

few Type II errors studies

we propose to use separation rates in a FamilyWise sense to
better understand procedures guaranteeing FWER

not possible right now to see the gain with step-down (maybe
the constants ?)

nothing yet for FDR
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Thank you !

Fromont, M. Lerasle, M., Reynaud-Bouret, P. Family Wise Separation

Rates for multiple testing, to appear in Annals of Statistics
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