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Post hoc inference Motivation

Motivating example: Genome-Wide Association Studies1

m ∼ 106 tests (genomic markers)
n ∼ 103 − 104 observations (individuals)

1Saad M, et al, Human molecular genetics 20.3 (2011), pp. 615–627
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Post hoc inference Motivation

Multiple testing

H = {1, . . .m} m null hypotheses to be tested
H0 ⊂ H: true null hypotheses, H1 = H \H0
(pi )1≤i≤m: p-values

Multiple testing procedures
Aim at building from the data a set R of rejected hypotheses satisfying a
statistical guarantee, e.g. controlling:

(k-)Family-Wise Error Rate: k-FWER = P(|R ∩ H0| > k − 1)
False Discovery Ratea: FDR = E

(
|R∩H0|
|R|∨1

)
Most procedures used in applications are thresholding procedures:

R = {i ∈ H, pi ≤ t̂}
aBenjamini and Hochberg, JRSS B (1995)
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Post hoc inference Motivation

Motivating example: Genome-Wide Association Studies

Typical analysis steps
1 define a list of candidates using a multiple testing procedure
2 refine this list based on prior knowledge (genome regions)
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Post hoc inference Motivation

More motivating examples
Cancer studies Neuroimaging

Differential gene expression analyses Activation of brain regions

Typical analysis steps
1 define a list of candidates using a multiple testing procedure
2 refine this list based on prior knowledge (genome regions, gene

pathways, brain regions)

Pierre Neuvial (LaMME, Évry) Post hoc inference for multiple testing MAS 2016, Grenoble 8 / 33



Post hoc inference Motivation

Limitations of classical multiple testing procedures

Practical limitation
The initial selection does not take full advantage of available prior
knowledge

Theoretical limitation
No formal risk assessment can generally be made on the resulting sets of
candidates

Can we obtain confidence statements on rejection sets selected after data
analysis ?
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Post hoc inference Motivation

Post hoc inference in a nutshell

Classical multiple testing Post hoc inference
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FDR ≤ 25% With probability ≥ 75%
|H1 ∩R1| ≥ 2 and |H1 ∩R2| ≥ 1
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Post hoc inference State of the art: Goeman and Solari (2011)

Goeman and Solari (2011)

Existing post hoc procedures2 are based on closed testing3

Require testing all 2m − 1 possible intersections between the m original
hypotheses!
Not feasible for m ≥ 20 or 30.

In practice: “shortcuts”
computationally efficient procedures (complexity ∼ m log(m))
increased conservativeness and/or narrower applicability:
Simes’ shortcut: valid under positive dependence between hypotheses
(PRDS)

2Multiple testing for exploratory research. Stat. Science (2011)
3Marcus, Peritz and Gabriel, Biometrika (1976).
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Joint Family-Wise Error Rate control for post hoc inference A novel risk measure: JFWER

Joint Family-Wise Error Rate

Definition
A family of nested rejection sets (Rk)k=1...m is said to control JFWER at
level α ∈ [0, 1] if:

P
(
∀k ∈ {1, . . . ,m}, |H0 ∩ Rk | ≤ k − 1

)
≥ 1− α.

Interpretation
Simultaneous k-FWER control for all k

Thresholding-based rejection sets

Rk = {1 ≤ i ≤ m : pi ≤ tk(α)} .
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Joint Family-Wise Error Rate control for post hoc inference A novel risk measure: JFWER

Post hoc inference through JFWER control

Upper bound on the number of false positives
Given a JFWER controlling family (Rk)k=1...m, with probability larger than
1− α, for any rejection set R,

|R ∩ H0| ≤ |R| ∧ min
1≤k≤|R|

{|R ∩ (Rk)c |+ k − 1}

Properties
data-driven rejection sets
any number of rejection sets
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Joint Family-Wise Error Rate control for post hoc inference A novel risk measure: JFWER

Illustration
Classical multiple testing Post hoc inference
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data-driven rejection sets
any number of rejection sets

(How) can JFWER control be achieved?
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Joint Family-Wise Error Rate control for post hoc inference Connection to GS2011

Simes’ inequality 4

If the p-values (pi ), 1 ≤ i ≤ m, are PRDS then

P(∃k ∈ {1, . . . ,m0} : q(k) ≤ αk/m0) ≤ α,

where q(1) ≤ · · · ≤ q(m0) denote the ordered p-values under H0

4R. J. Simes. Biometrika 73.3 (1986), pp. 751–754.
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Joint Family-Wise Error Rate control for post hoc inference Connection to GS2011

Simes-based JFWER control

Corollary of Simes’ inequality
Under PRDS, JFWER control at level α is achieved by the family

Rk = {1 ≤ i ≤ m : pi ≤ αk/m}, 1 ≤ k ≤ m

Proposition (Post hoc bound for the Simes family)
Under PRDS, with probability larger than 1− α, for any R,

|R ∩ H0| ≤ |R| ∧ min
1≤k≤|R|

{∑
i∈R

1 {pi > αk/m}+ k − 1
}
.

We recover the bound obtained by GS2011
Easier to interpret (no more closed testing or shortcuts)
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Obtaining Joint Family-Wise Error Rate control
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Obtaining Joint Family-Wise Error Rate control Setting: known dependency

Dependence-free JFWER control?
Under arbitrary dependence, with probability larger than 1− α, for any R,

|R ∩ H0| ≤ |R| ∧ min
1≤k≤|R|

{∑
i∈R

1 {pi > α/Kmk/m}+ k − 1
}
,

Km =
∑m

j=1 j−1 ∼ log(m): Hommel’s correction factor for dependency5

Dependence-free adjustment is not a sensible objective
implies adjusting to a worst case dependency
very conservative (cf Benjamini-Yekutieli for FDR control)
we need to be adaptive to dependency

Setting considered here: known dependency
Example: GWAS with pilot data

5G Hommel. “Tests of the overall hypothesis for arbitrary dependence structures”.
Biometrische Zeitschrift 25.5 (1983), pp. 423–430.
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Obtaining Joint Family-Wise Error Rate control Adjustment of a reference threshold family

JFWER control with λ adjustment

Consider a reference family of rejections sets of the form

Rk = {1 ≤ i ≤ m : pi ≤ tk(α)}, 1 ≤ k ≤ m

Assumption: the joint null distribution of the test statistics is known or can
be sampled from

Then it is possible to calibrate λ > 0 such that the rejection sets associated
to tk(λα) yields tight JFWER control.

Examples of reference family
Simes family: tk(α) = αk/m (λ−1 =

∑m
k=1 k−1 works!)

Balanced family: tk(α) such that P
(
|H0 ∩ Rk | ≤ k − 1

)
≥ 1− α
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Obtaining Joint Family-Wise Error Rate control Adjustment of a reference threshold family

Recall: JFWER control under positive dependency

Simes’ equality is sharp under independence, but conservative under positive
dependence.

Conservativeness of JFWER control under PRDS
Toy example: Gaussian equi-correlation, white setting (m0 = m = 1, 000):
Test statistics ∼ N (0,Σ) with Σii = 1 and Σij = ρ for i 6= j .

Equi-correlation level: ρ 0 0.1 0.2 0.4 0.8
Achieved JFWER ×α−1 0.99 0.85 0.72 0.42 0.39

Can we build a family achieving sharper JFWER control?
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Obtaining Joint Family-Wise Error Rate control Adjustment of a reference threshold family

JFWER control with λ adjustment for Simes’ family
Example under positive dependency (Gaussian equi-correlation)
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With probability ≥ 1− α = 75%:
tk(α) Lower bound on |R ∩ H1|
αk/m |R1 ∩H1| ≥ 2 and |R2 ∩H1| ≥ 1
αλk/m |R1 ∩H1| ≥ 3 and |R2 ∩H1| ≥ 2
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Obtaining Joint Family-Wise Error Rate control Adjustment of a reference threshold family

JFWER control with λ adjustment for Simes’ family
Numerical results under Gaussian equi-correlation:

Xi ∼ N (0, 1) under H0, and Xi ∼ N (µ̄, 1) under H1
cor(Xi ,Xj) = ρ for i 6= j

ρ = 0 ρ = 0.2 ρ = 0.4
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Obtaining Joint Family-Wise Error Rate control Adjustment of a reference threshold family

Conclusions

Summary
JFWER: a new risk measure for multiple testing
can be used to build post hoc inference procedures
generalizes existing post hoc procedures

Results not discussed here
Control of P

(
∀k ∈ {1, . . . ,Kmax}, |H0 ∩ Rk | ≤ k − 1

)
Data-driven reference families for balanced JFWER control
Step-down JFWER control in order to adapt to |H0|
Power
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Obtaining Joint Family-Wise Error Rate control Adjustment of a reference threshold family
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Obtaining Joint Family-Wise Error Rate control Adjustment of a reference threshold family

Simes Family, kMax=m
ρ = 0 ρ = 0.2 ρ = 0.4
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Obtaining Joint Family-Wise Error Rate control Adjustment of a reference threshold family

Simes Family, kMax=200
ρ = 0 ρ = 0.2 ρ = 0.4
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Obtaining Joint Family-Wise Error Rate control Adjustment of a reference threshold family

Simes Family, kMax=2m1

ρ = 0 ρ = 0.2 ρ = 0.4
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Obtaining Joint Family-Wise Error Rate control Adjustment of a reference threshold family

Balanced Family, kMax=m
ρ = 0 ρ = 0.2 ρ = 0.4
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Obtaining Joint Family-Wise Error Rate control Adjustment of a reference threshold family

Balanced Family, kMax=200
ρ = 0 ρ = 0.2 ρ = 0.4
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Obtaining Joint Family-Wise Error Rate control Adjustment of a reference threshold family

Balanced Family, kMax=2m1

ρ = 0 ρ = 0.2 ρ = 0.4
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Outline

1 Post hoc inference
Motivation
State of the art: Goeman and Solari (2011)

2 Joint Family-Wise Error Rate control for post hoc inference
A novel risk measure: JFWER
Connection to GS2011

3 Obtaining Joint Family-Wise Error Rate control
Setting: known dependency
Adjustment of a reference threshold family
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