Gap Safe screening rules for sparse multi-task and multi-class models

Alexandre Gramfort

alexandre.gramfort@telecom-paristech.fr

Assistant Professor CNRS LTCI, Télécom Paris Tech, Université Paris-Saclay

Joint work with: E. Ndiaye, O. Fercoq, J. Salmon



MAS - 31 Août 2016

Outline

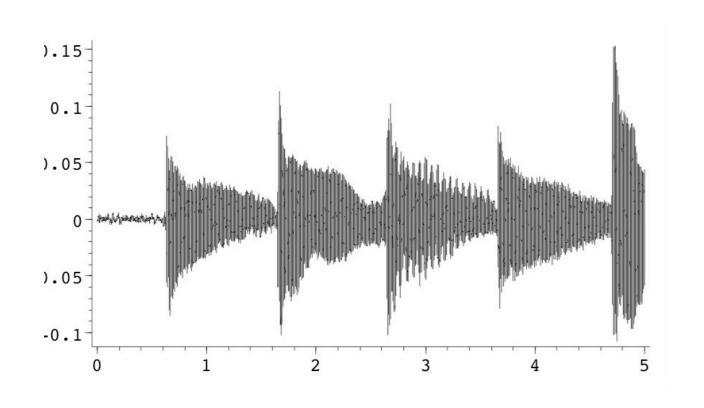
Why sparsity? A tour with examples

Gap Safe Screening rules for the Lasso

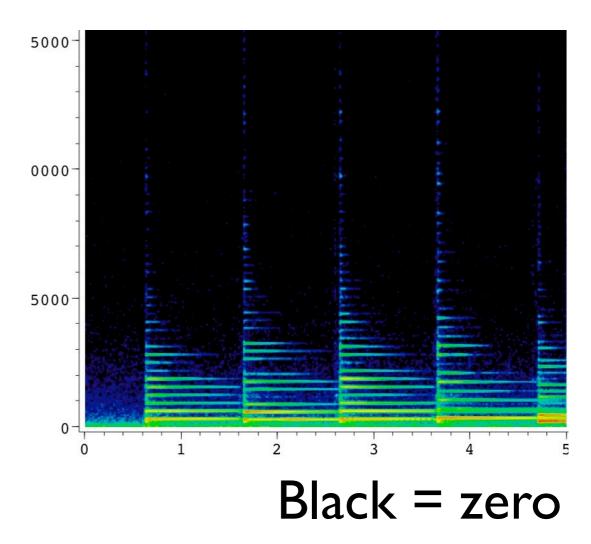
Extensions to multi-task and multi-class models

Why sparsity?

Audio signal

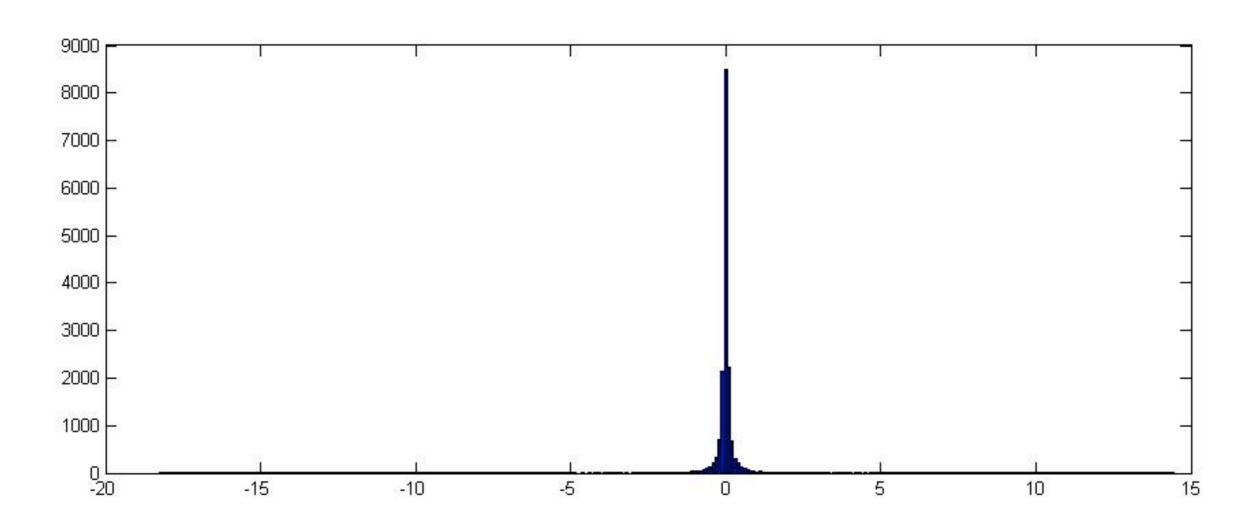


Its time-frequency representation (MDCT)



Why sparsity?

Histogram of MDCT coefficients



Most of the coefficients are 0 = Sparsity

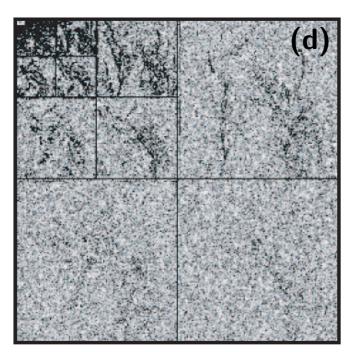
sparsity on images

Courtesy: G. Peyré, Ceremade, Université Paris 9 Dauphine

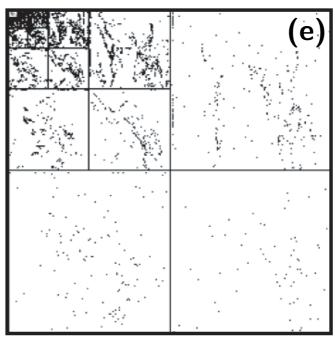
Original

Noisy.

Smoothed



Coefficients

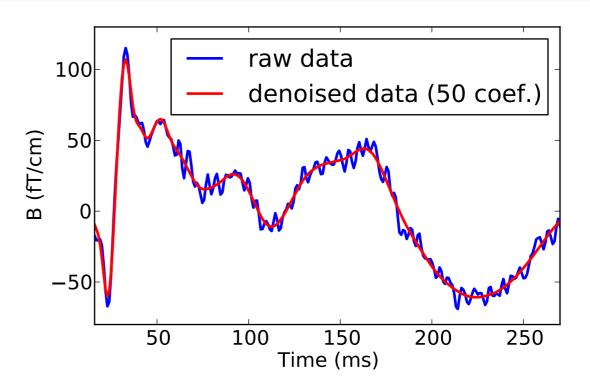


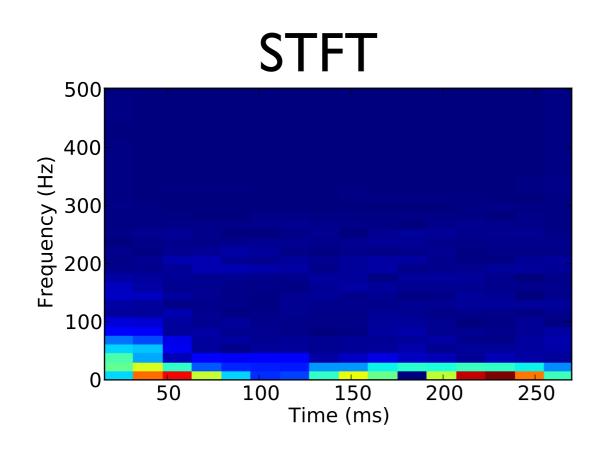
Thresholded coefficients

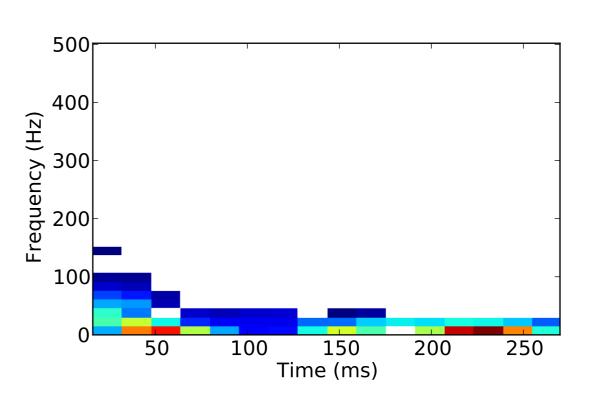
Denoised

sparsity on neuroscience signals

Example of MEG data







Take home message: All signals are sparse...

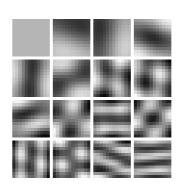
... when observed with the right representation / dictionary

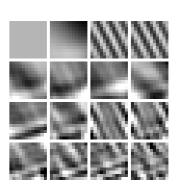
Use sparsity for statistical inference

Sparse linear model

Let $y \in \mathbb{R}^n$ be a signal, e.g., an image

Let $X = [\mathbf{x}_1, \dots, \mathbf{x}_p] \in \mathbb{R}^{n \times p}$ be a collection of (normalized) atoms: corresponds to a **dictionary**





X well suited if one can approximate the signal $y \approx X\beta$ with a sparse vector $\beta \in \mathbb{R}^p$

$$\underbrace{\begin{pmatrix} y \\ y \end{pmatrix}} \approx \underbrace{\begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_1 \\ X \in \mathbb{R}^{n \times p} \end{pmatrix}} \cdot \underbrace{\begin{pmatrix} \beta_1 \\ \vdots \\ \beta_p \end{pmatrix}}_{\beta \in \mathbb{R}^p}$$

Let's start with the Lasso

$$\hat{\beta}^{(\lambda)} \in \arg\min_{\beta \in \mathbb{R}^p} \ \left(\begin{array}{cc} \frac{1}{2} \|y - X\beta\|_2^2 & + & \lambda \|\beta\|_1 \\ \text{data fitting term} & \text{sparsity-inducing penalty} \end{array} \right)$$

• Compute $\hat{\beta}^{(\lambda)}$ for **many** λ 's: *e.g.*, T values from $\lambda_{\max} := \|X^\top y\|_{\infty}$ to $\epsilon \lambda_{\max}$ on log-scale ($T = 100, \epsilon = 0.001$)

Denoising case

Suppose the design is simple: n=p and $X=\mathrm{Id}_n$, meaning the atoms are canonical elements: $\mathbf{x}_j=(0,\cdots,0,\underset{i}{1},0,\cdots,1)^{\top}$

$$\hat{\beta}^{(\lambda)} \in \underset{\beta \in \mathbb{R}^p}{\operatorname{arg\,min}} \left(\frac{1}{2} \| y - \beta \|^2 + \lambda \| \beta \|_1 \right)$$

$$\hat{\beta}^{(\lambda)} = \underset{\beta \in \mathbb{R}^p}{\operatorname{arg\,min}} \left(\frac{1}{2} \| y - \beta \|^2 + \lambda \| \beta \|_1 \right) \qquad \text{(strictly convex)}$$

$$\hat{\beta}^{(\lambda)}_j = \underset{\beta_j \in \mathbb{R}}{\operatorname{arg\,min}} \left(\frac{1}{2} (y_i - \beta_j)^2 + \lambda |\beta_j| \right), \forall j \in [n] \qquad \text{(separable)}$$

This reduces to a 1D problem.

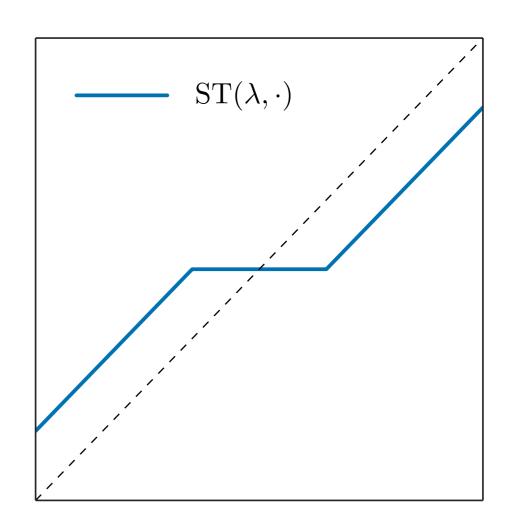
Rem: The solution is called the **proximal** operator of $\lambda \| \cdot \|_1$

Soft Thresholding

The 1D problem has a closed form solution: **Soft-Thresholding**:

$$ST(\lambda, y) = \underset{\beta \in \mathbb{R}}{\operatorname{arg\,min}} \left(\frac{1}{2} (y - \beta)^2 + \lambda |\beta| \right)$$
$$= \operatorname{sign}(y) \cdot (|y| - \lambda)_{+}$$

with the notation $(\cdot)_+ = \max(0,\cdot)$



Proof: easy with sub-gradients and Fermat condition

Soft Thresholding

Possible algorithms for solving this **convex** program:

- ► Homotopy method / LARS : very efficient for small p Osborne et al. (2000), Efron et al. (2004) and full path
- Forward Backward / proximal algorithm: useful in signal/image for case where $r \to \mathbf{x}_j^\top r$ is cheap to compute (e.g., with FFT, Fast Wavelet Transform, etc.) Beck and Teboulle (2009)
- Coordinate Descent: very useful for large p and potentially sparse matrix X (e.g., from text encoding) Friedman et al. (2007)

Also better for badly conditioned problems

Dual problem

$$P_{\lambda}(\beta) = \frac{1}{2} \|y - X\beta\|^2 + \lambda \|\beta\|_1$$

$$\Delta_X = \left\{ \theta \in \mathbb{R}^n : |\mathbf{x}_j^\top \theta| \le 1, \forall j \in [p] \right\}$$

$$\hat{\theta}^{(\lambda)} = \underset{\theta \in \Delta_X \subset \mathbb{R}^n}{\arg \max} \frac{1}{2} \|y\|^2 - \frac{\lambda^2}{2} \|\theta - \frac{y}{\lambda}\|^2$$

$$= D_{\lambda}(\theta)$$

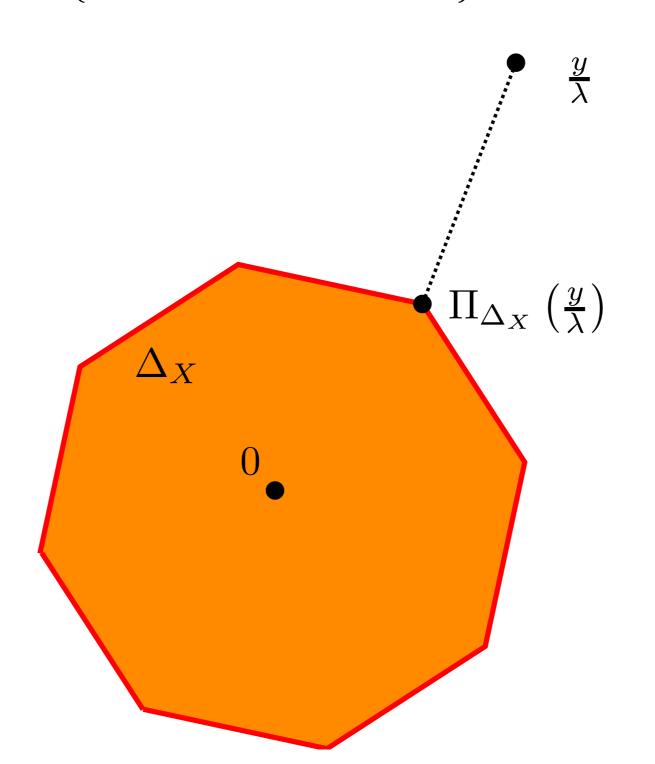
Rem: The dual feasible set is a polytope

$$\Delta_X = \bigcap_{j=1}^p \left\{ \theta \in \mathbb{R}^n : |\mathbf{x}_j^\top \theta| \le 1 \right\} = \left\{ \theta \in \mathbb{R}^n : \|X^\top \theta\|_{\infty} \le 1 \right\}$$

Rem: the dual formulation is obtained using an additional variable $z=(y-X\beta)/\lambda$ and considering the Lagrangian, *cf.* Kim *et al.* (2007)

Geometric interpretation

The dual optimal solution is the projection of y/λ over the dual feasible set $\Delta_X = \{\theta \in \mathbb{R}^n : \|X^{\top}\theta\|_{\infty} \leq 1\} : \hat{\theta}^{(\lambda)} = \Pi_{\Delta_X}(y/\lambda)$



Duality gap properties

- Primal objective: P_{λ} , Primal solution: $\hat{\beta}^{(\lambda)} \in \mathbb{R}^p$
- Dual objective: D_{λ} , Primal solution: $\hat{\theta}^{(\lambda)} \in \Delta_X \subset \mathbb{R}^n$,

Duality gap: for any $\beta \in \mathbb{R}^p$ and any $\theta \in \Delta_X$,

$$G_{\lambda}(\beta, \theta) = P_{\lambda}(\beta) - D_{\lambda}(\theta)$$

$$= \frac{1}{2} \|X\beta - y\|^{2} + \lambda \|\beta\|_{1} - (\frac{1}{2} \|y\|^{2} - \frac{\lambda^{2}}{2} \|\theta - \frac{y}{\lambda}\|^{2})$$

Rem: For all $\beta \in \mathbb{R}^p, \theta \in \Delta_X$,

$$D_{\lambda}(\theta) \leqslant D_{\lambda}(\hat{\theta}^{(\lambda)}) = P_{\lambda}(\hat{\beta}^{(\lambda)}) \leqslant P_{\lambda}(\beta)$$
 (Strong duality)

Consequences:

- $G_{\lambda}(\beta,\theta) \geqslant 0$
- $G_{\lambda}(\beta, \theta) \leqslant \epsilon \implies P_{\lambda}(\beta) P_{\lambda}(\hat{\beta}^{(\lambda)}) \leqslant \epsilon \text{ (stopping criterion!)}$

KKT Optimality conditions

- Primal solution : $\hat{\beta}^{(\lambda)} \in \mathbb{R}^p$
- Dual solution : $\hat{\theta}^{(\lambda)} \in \Delta_X \subset \mathbb{R}^n$

Primal/Dual link:
$$y = X\hat{\beta}^{(\lambda)} + \lambda\hat{\theta}^{(\lambda)}$$

Necessary and sufficient optimality conditions:

KKT/Fermat:
$$\forall j \in [p], \ x_j^{\top} \hat{\theta}^{(\lambda)} \in \begin{cases} \{\operatorname{sign}(\hat{\beta}_j^{(\lambda)})\} & \text{if} \quad \hat{\beta}_j^{(\lambda)} \neq 0, \\ [-1, 1] & \text{if} \quad \hat{\beta}_j^{(\lambda)} = 0. \end{cases}$$

Rem: the KKT implies that $\forall \lambda \geqslant \lambda_{\max} = \|X^\top y\|_{\infty}$, $0 \in \mathbb{R}^p$ is the (unique here) primal solution for P_{λ}

Safe rules [El Ghaoui et al. 2012]

Screening thanks to the KKT is possible:

If
$$|\mathbf{x}_j^{ op}\hat{ heta}^{(\lambda)}| < 1$$
 then, $\hat{eta}_j^{(\lambda)} = 0$

Beware: $\hat{\theta}^{(\lambda)}$ is unknown, so one need to consider a safe region \mathcal{C} containing $\hat{\theta}^{(\lambda)}$, i.e., $\hat{\theta}^{(\lambda)} \in \mathcal{C}$, leading to :

safe rule:
$$\left| \begin{array}{c|c} \operatorname{If} \ \sup_{\theta \in \mathcal{C}} |\mathbf{x}_j^\top \theta| < 1 \ \operatorname{then} \ \hat{\beta}_j^{(\lambda)} = 0 \end{array} \right| \qquad (\star)$$

The new goal is simple, find a region C:

• as narrow as possible containing $\hat{\theta}^{(\lambda)}$

• such that
$$\mu_{\mathcal{C}}: \begin{cases} \mathbb{R}^n & \mapsto \mathbb{R}^+ \\ \mathbf{x} & \to \sup_{\theta \in \mathcal{C}} |\mathbf{x}^\top \theta| \end{cases}$$
 is easy to compute

Safe sphere rules

Let C = B(c, r) be a ball of center $c \in \mathbb{R}^n$ and radius r > 0. Then simple computation provide:

$$\mu_{\mathcal{C}}(\mathbf{x}) = |\mathbf{x}^{\top} c| + r \|\mathbf{x}\|$$

so the safe rule becomes

If
$$|\mathbf{x}_j^\top c| + r ||\mathbf{x}_j|| < 1$$
 then $\hat{\beta}_j^{(\lambda)} = 0$ (1)

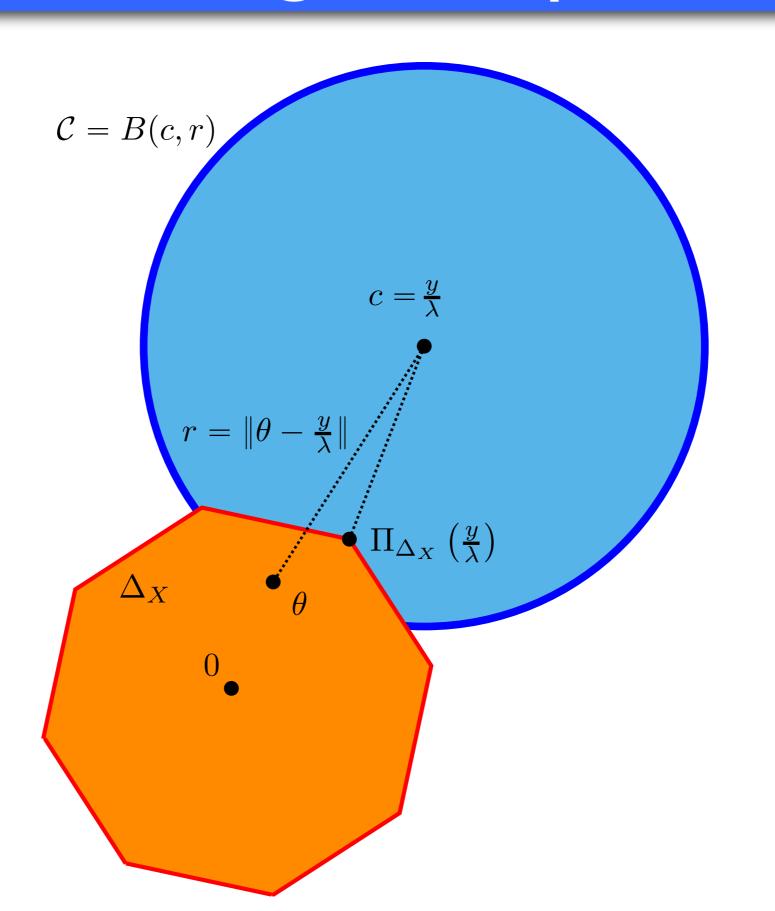
We say we screen-out the variables x_j satisfying (1)

Active set:
$$A^{(\lambda)}(\mathcal{C}) = \{j \in [p] : \mu_{\mathcal{C}}(\mathbf{x}_j) \ge 1\}$$

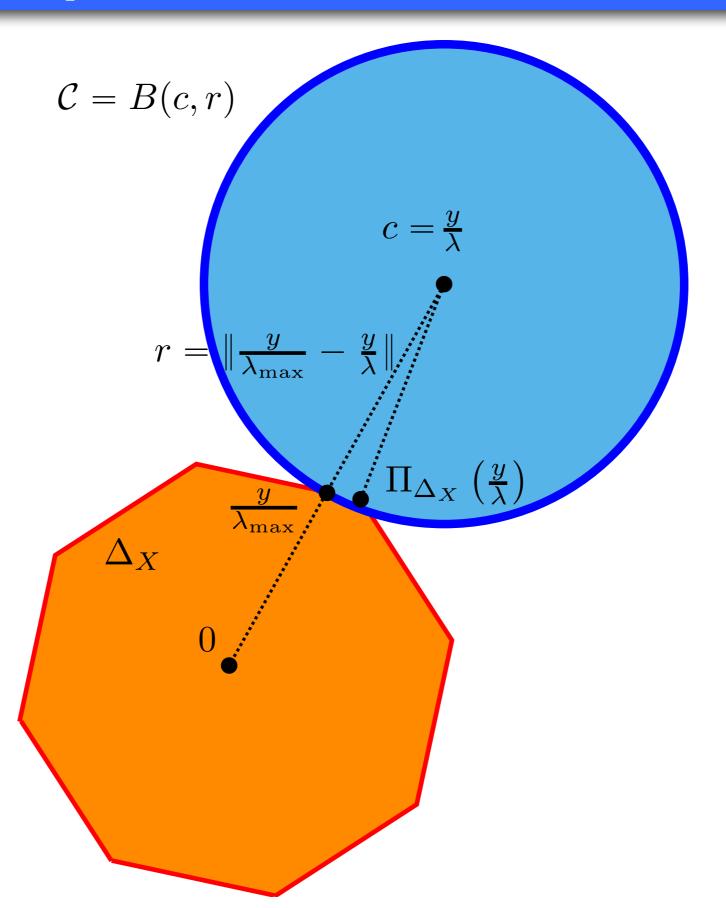
New objective:

- find r as small as possible
- find c as close to $\hat{\theta}^{(\lambda)}$ as possible.

Creating safe sphere



Original sphere [El Ghaoui et al.]



Original static rule [El Ghaoui et al.]

Static safe region: before any optimization, for a fix λ .

$$C = B(c, r) = B(y/\lambda, ||y/\lambda_{\max} - y/\lambda||)$$

If
$$|\mathbf{x}_j^\top y| < \lambda (1 - \|y/\lambda_{\max} - y/\lambda \|\|\mathbf{x}_j\|)$$
 then $\hat{\beta}_j^{(\lambda)} = 0$ (2)

Rem: This reinterprets screening methods for variable selection: "If $|\mathbf{x}_j^\top y|$ is small, remove \mathbf{x}_j " as a safe rule for the Lasso

Dynamic rule [Bonnefoy et al. 2014]

Dynamic point of view: build $\theta_k \in \Delta_X$, evolving with the solver iterations to get refined safe rules Bonnefoy *et al.* (2014, 2015)

Remind link at optimum: $\lambda \hat{\theta}^{(\lambda)} = y - X \hat{\beta}^{(\lambda)}$

Current residual for primal point β_k : $\rho_k = y - X\beta_k$

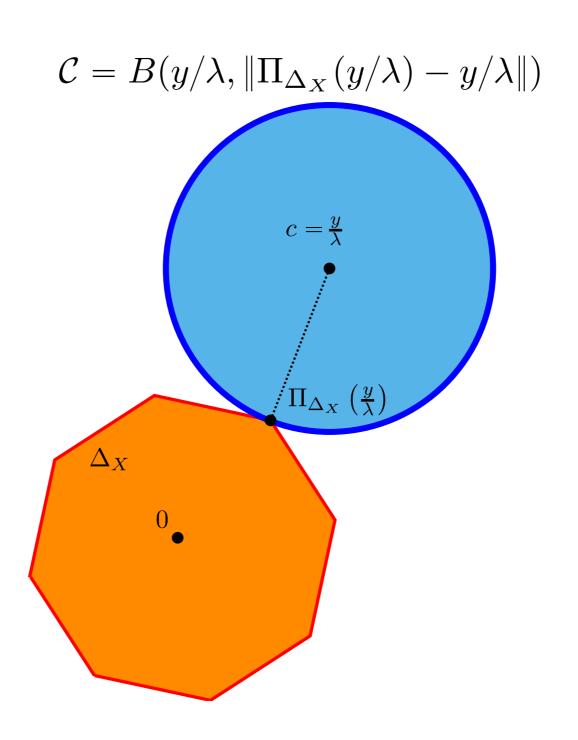
<u>Dual candidate</u>: choose θ_k proportional to the residual

$$\theta_k = \alpha_k \rho_k,$$
 where
$$\alpha_k = \min \Big[\max \left(\frac{y^\top \rho_k}{\lambda \left\| \rho_k \right\|^2}, \frac{-1}{\left\| X^\top \rho_k \right\|_\infty} \right), \frac{1}{\left\| X^\top \rho_k \right\|_\infty} \Big].$$

Motivation: projecting over the convex set $\Delta_X \cap \operatorname{Span}(\rho_k)$ is cheap

Limits of previous approaches

The radius $r_k = \|\theta_k - y/\lambda\|$ does not converge to zero. The limiting safe sphere is



Gap safe sphere

For any $\beta \in \mathbb{R}^p$, $\theta \in \Delta_X$

$$G_{\lambda}(\beta, \theta) = \frac{1}{2} \|X\beta - y\|^{2} + \lambda \|\beta\|_{1} - \left(\frac{1}{2} \|y\|^{2} - \frac{\lambda^{2}}{2} \|\theta - \frac{y}{\lambda}\|^{2}\right)$$

Gap Safe ball:
$$B(\theta, r_{\lambda}(\beta, \theta))$$
, where $r_{\lambda}(\beta, \theta) = \sqrt{2G_{\lambda}(\beta, \theta)}/\lambda^2$

<u>Rem</u>: If $\beta_k \to \hat{\beta}^{(\lambda)}$ and $\theta_k \to \hat{\theta}^{(\lambda)}$ then $G_{\lambda}(\beta_k, \theta_k) \to 0$: a converging solver leads to converging safe rule!

Gap safe sphere is safe!

- $D_{\lambda}(\hat{\theta}^{(\lambda)}) \leq P_{\lambda}(\beta_k)$ (weak Duality)
- D_{λ} is λ^2 -strongly concave so for any $\theta_1, \theta_2 \in \mathbb{R}^n$,

$$D_{\lambda}(\theta_1) \leqslant D_{\lambda}(\theta_2) + \langle \nabla D_{\lambda}(\theta_2), \theta_1 - \theta_2 \rangle - \frac{\lambda^2}{2} \|\theta_1 - \theta_2\|_2^2$$

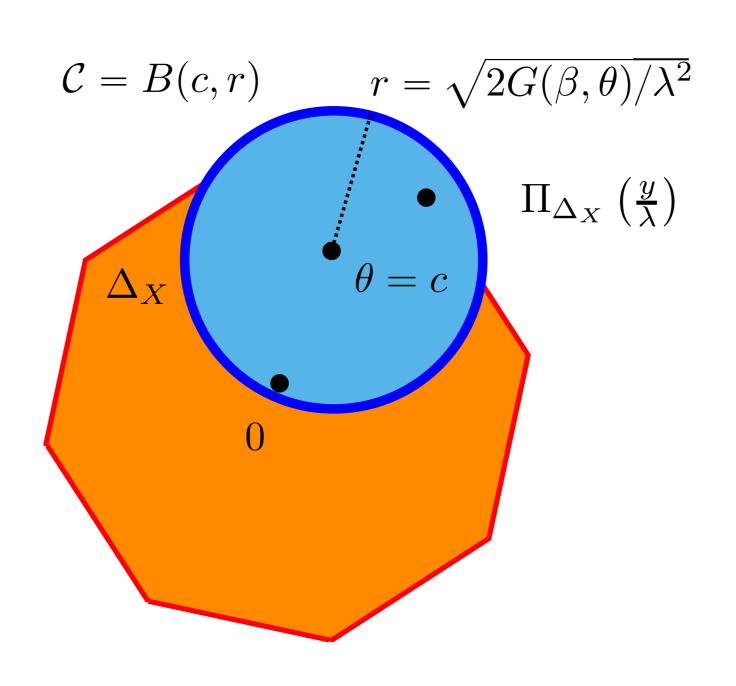
• $\hat{\theta}^{(\lambda)}$ maximizes D_{λ} over Δ_X , so

$$\forall \theta \in \Delta_X, \qquad \langle \nabla D_{\lambda}(\hat{\theta}^{(\lambda)}), \theta - \hat{\theta}^{(\lambda)} \rangle \leq 0$$

To conclude, for a $\theta \in \Delta_X$:

$$\frac{\lambda^2}{2} \left\| \theta - \hat{\theta}^{(\lambda)} \right\|_2^2 \leq D_{\lambda}(\hat{\theta}^{(\lambda)}) - D_{\lambda}(\theta) + \langle \nabla D_{\lambda}(\hat{\theta}^{(\lambda)}), \theta - \hat{\theta}^{(\lambda)} \rangle$$
$$\leq P_{\lambda}(\beta_k) - D_{\lambda}(\theta)$$

Gap safe sphere is safe!



Algorithm 1 Coordinate descent (Lasso)

```
Input: X, y, \epsilon, K, f, (\lambda_t)_{t \in [T-1]}
 1: Initialization: \lambda_0 = \lambda_{\max}, \beta^{\lambda_0} = 0
 2: for t \in |T - 1| do
                                                                                         \triangleright Loop over \lambda's
       \beta \leftarrow \beta^{\lambda_{t-1}}
 3:
                                                                                 \triangleright previous \epsilon-solution
 4: for k \in [K] do
                   if k \mod f = 1 then
 5:
                          Construct \theta \in \Delta_X
 6:
                         if G_{\lambda_{t}}(\beta,\theta) \leqslant \epsilon then \triangleright Stop if duality gap small
 7:
                               \beta^{\lambda_t} \leftarrow \beta
 8:
                                break
 9:
                         end if
10:
                   end if
11:
                   for j \in |p| do

    Soft-Threshold coordinates

12:
                         \beta_j \leftarrow \mathrm{ST}\left(\frac{\lambda_t}{\|\mathbf{x}_i\|^2}, \beta_j - \frac{\mathbf{x}_j^\top (X\beta - y)}{\|\mathbf{x}_i\|^2}\right)
13:
                   end for
14:
             end for
15:
16: end for
```

Algorithm 2 Coordinate descent (Lasso) with GAP Safe screening

```
Input: X, y, \epsilon, K, f, (\lambda_t)_{t \in [T-1]}
 1: Initialization: \lambda_0 = \lambda_{\max}, \beta^{\lambda_0} = 0
 2: for t \in [T-1] do
                                                                                            \triangleright Loop over \lambda's
 3: \beta \leftarrow \beta^{\lambda_{t-1}}
                                                                                    \triangleright previous \epsilon-solution
 4: for k \in [K] do
                   if k \mod f = 1 then
  5:
                          Construct \theta \in \Delta_X, A^{\lambda_t}(\mathcal{C}) = \{j \in [p] : \mu_{\mathcal{C}}(\mathbf{x}_i) \geq 1\}
 6:
                          if G_{\lambda_t}(\beta, \theta) \leq \epsilon then \triangleright Stop if duality gap small
  7:
                                \beta^{\lambda_t} \leftarrow \beta
 8:
                                 break
 9:
                          end if
10:
                    end if
11:
                   for j \in A^{\lambda_t}(\mathcal{C}) do

    Soft-Threshold coordinates

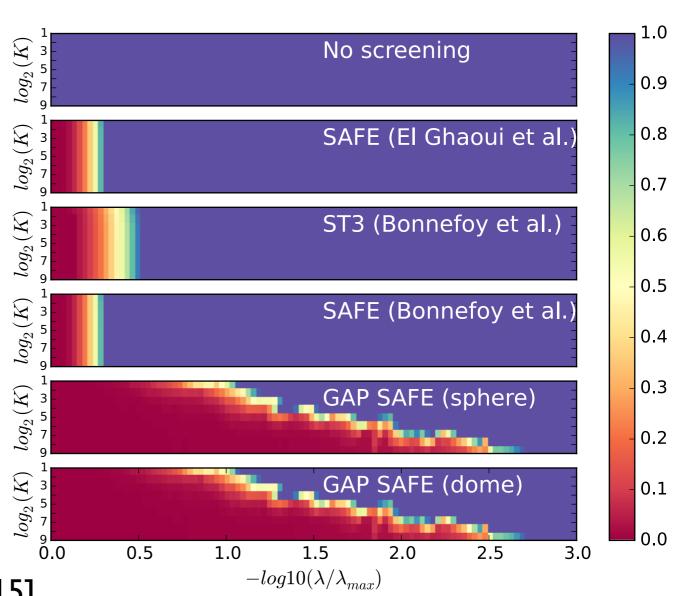
12:
                          \beta_j \leftarrow \operatorname{ST}\left(\frac{\lambda_t}{\|\mathbf{x}_i\|^2}, \beta_j - \frac{\mathbf{x}_j^\top (X\beta - y)}{\|\mathbf{x}_i\|^2}\right)
13:
                    end for
14:
             end for
15:
16: end for
```

Results

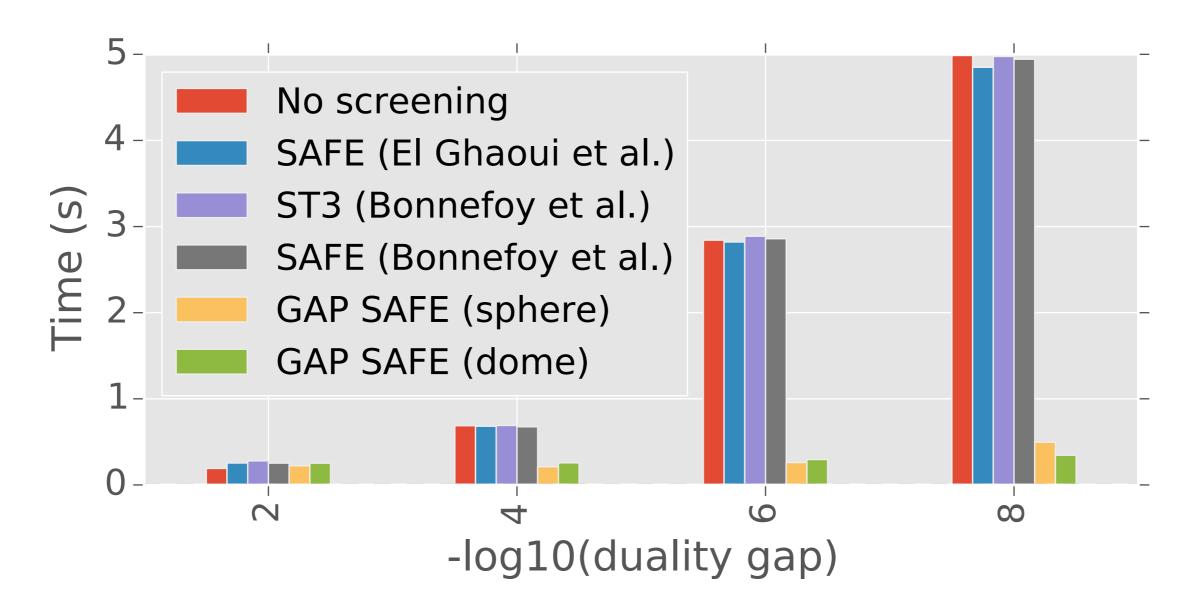
Lasso Results

- it is a dynamic rule (by construction)
- it is a sequential rule (without any more effort)
- the safe region is converging toward $\{\hat{\theta}^{(\lambda)}\}$
- it works better in practice

Figure: Proportion of active variables as a function of λ and the number of iterations K on Leukemia dataset. Better strategies have longer range of λ with (red) small active sets



Lasso Results



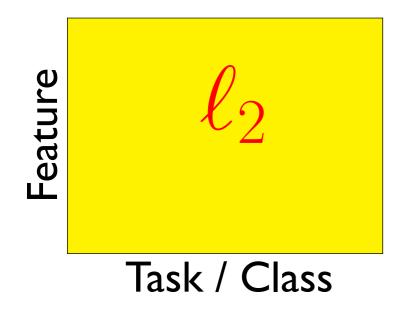
Time to reach convergence using various screening rules. Full path with 100 values of λ on logarithmic grid from λ_{max} to $\lambda_{max}/1000$

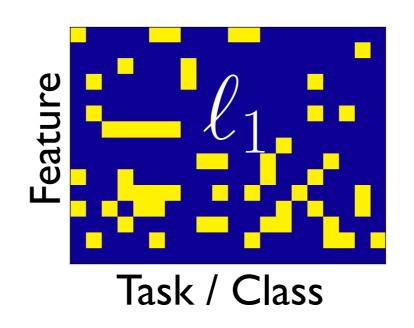
[Fercoq O., Gramfort A. Salmon J., ICML 2015]

Beyond Lasso: multi-task and multi-class models

Same sparsity pattern per task / class

Joint feature selection





$$\|\mathbf{X}\|_{21} = \sum_{i} \sqrt{\sum_{t} |x_{i,t}|^2}$$

[Argyriou et al., 2006, 2008; Obozinski et al., 2010]

multi-class / multi-task problem

$$\widehat{\mathbf{B}}^{(\lambda)} \in \underset{\mathbf{B} \in \mathbb{R}^{p \times q}}{\operatorname{arg\,min}} \sum_{i=1}^{n} f_i(x_i^{\top} \mathbf{B}) + \lambda \Omega(\mathbf{B})$$

Dual feasible set :
$$\Delta_X = \left\{\Theta \in \mathbb{R}^{n \times q} \ : \ \|\mathbf{x}_j^\top \Theta\|_2 \leqslant 1, \forall j \in [p] \right\}$$

Dual:

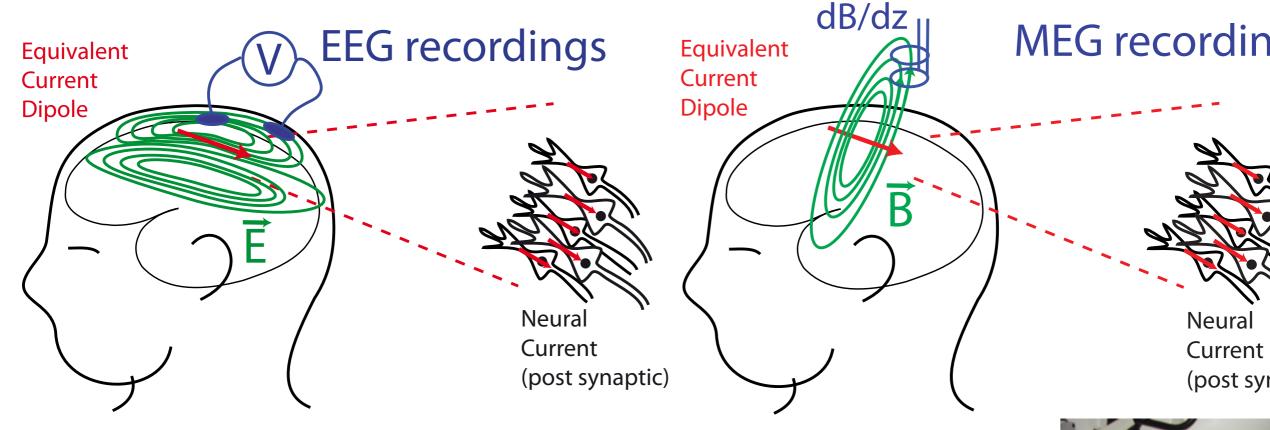
$$\widehat{\Theta}^{(\lambda)} = \underset{\Theta \in \Delta_X}{\operatorname{arg\,max}} - \sum_{i=1}^{n} f_i^*(-\lambda \Theta_{i,:})$$

with:

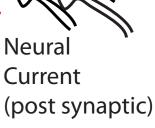
$$\Delta_X = \bigcap_{j=1}^p \left\{ \Theta \in \mathbb{R}^{n \times q} : |\mathbf{x}_j^\top \Theta|_2 \leqslant 1 \right\} = \left\{ \Theta \in \mathbb{R}^{n \times q} : \|X^\top \Theta\|_{2\infty} \leqslant 1 \right\}$$

Rem: Problem for Gap Safe rules: Compute efficiently Gap and dual feasible points

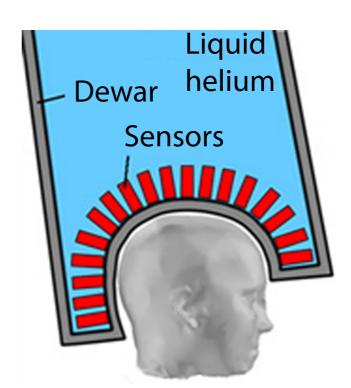
Electro- & Magneto-encephalography

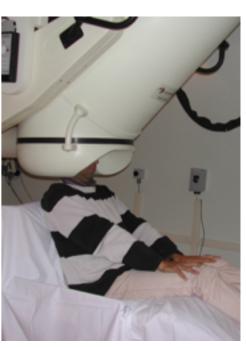


MEG recordings



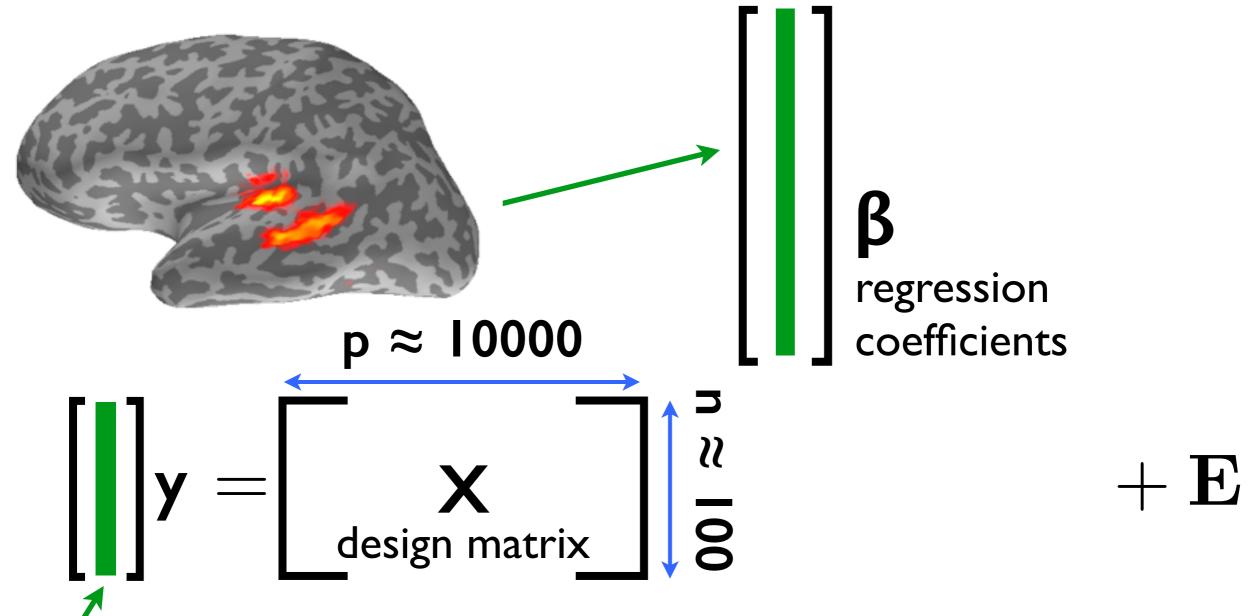
First EEG recordings in 1929 by H. Berger

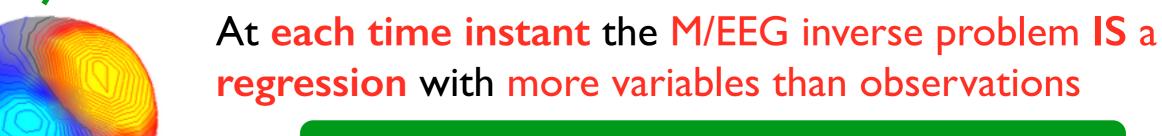




Hôpital La Timone Marseille, France

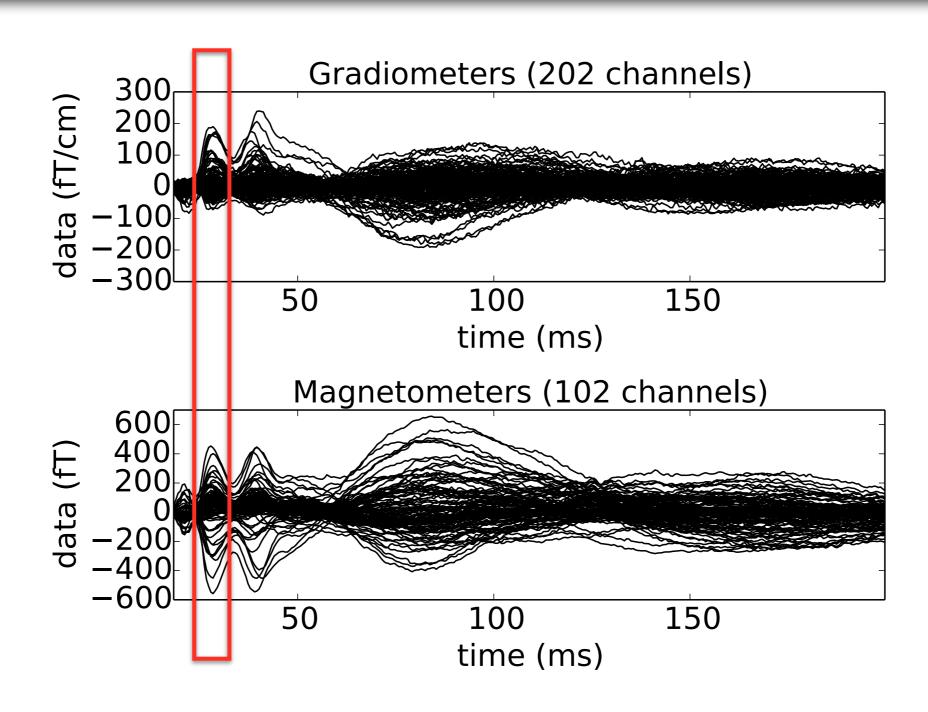
Inverse problem: $y = X\beta + E$





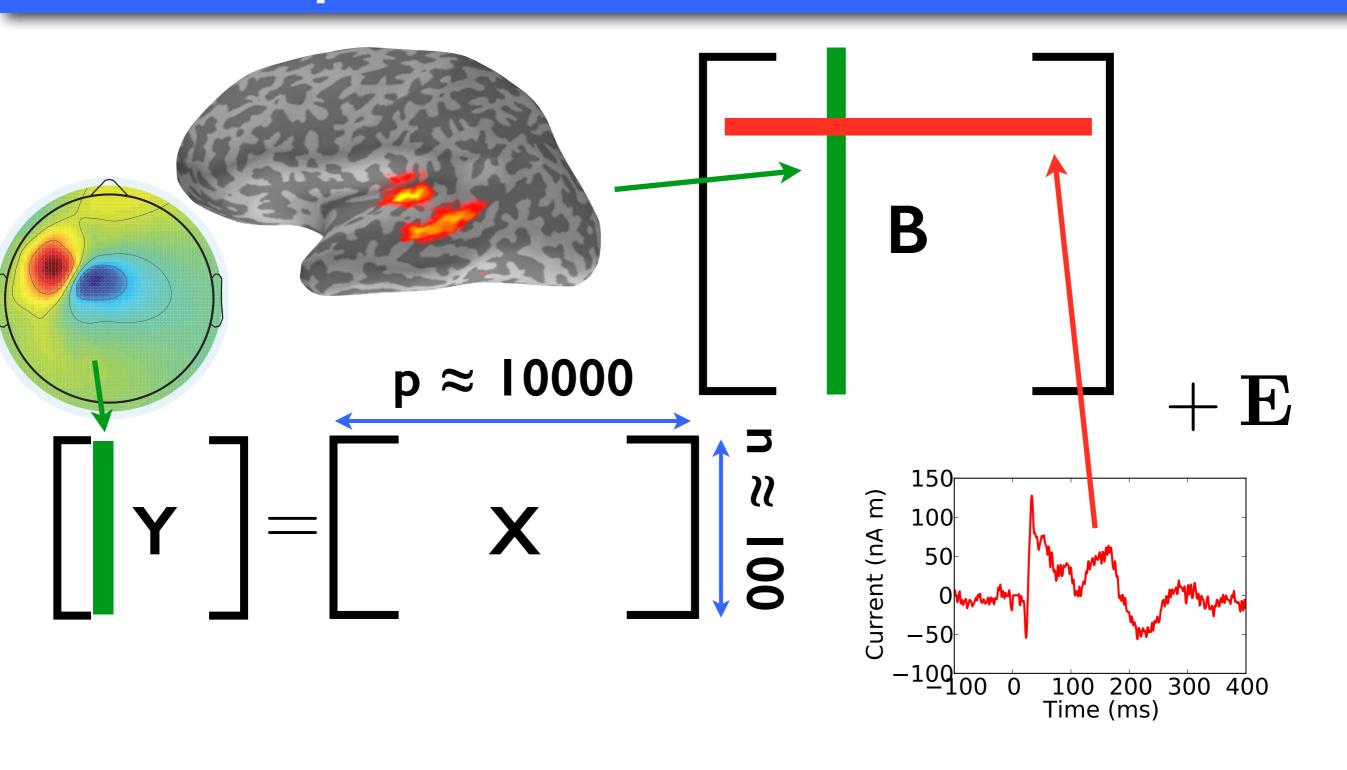
Small "n" large "p" problem

MEG EEG data



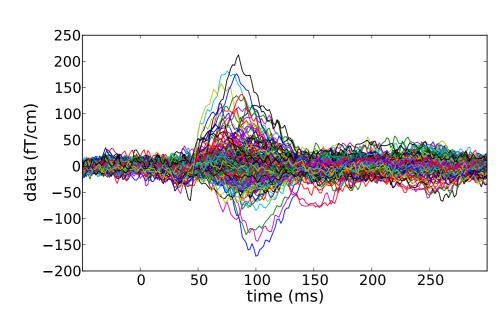
Stable source locations

Inverse problem with time:Y = XB+E

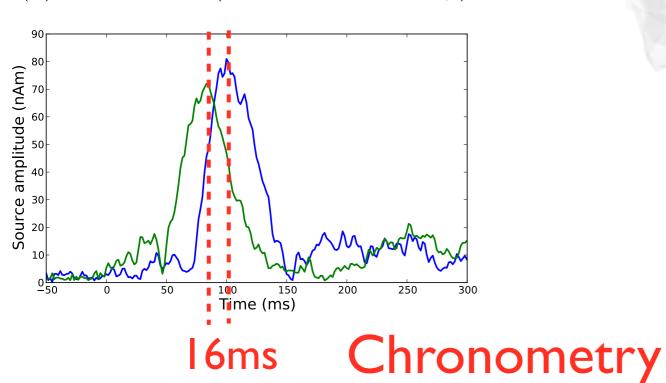


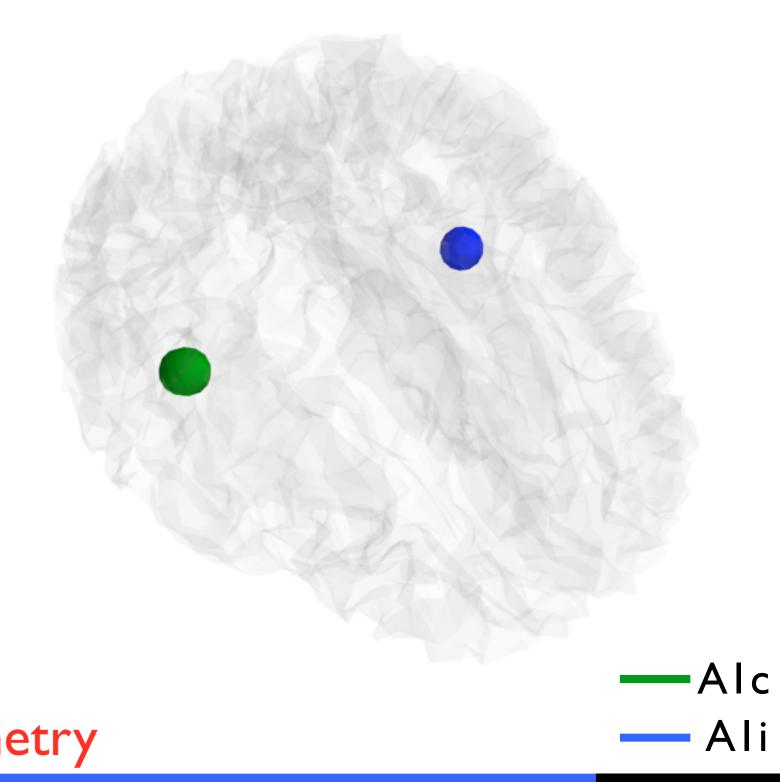
MEG Auditory data

Auditory tones in left ear (305 MEG, 59 EEG channels, 50 epochs)



(a) MEG data (Gradiometers only)





Results on MEG

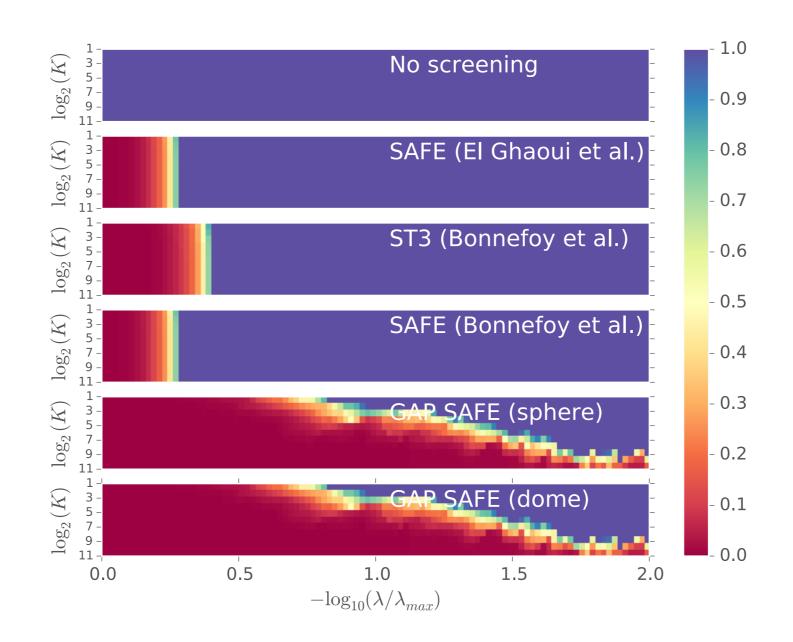
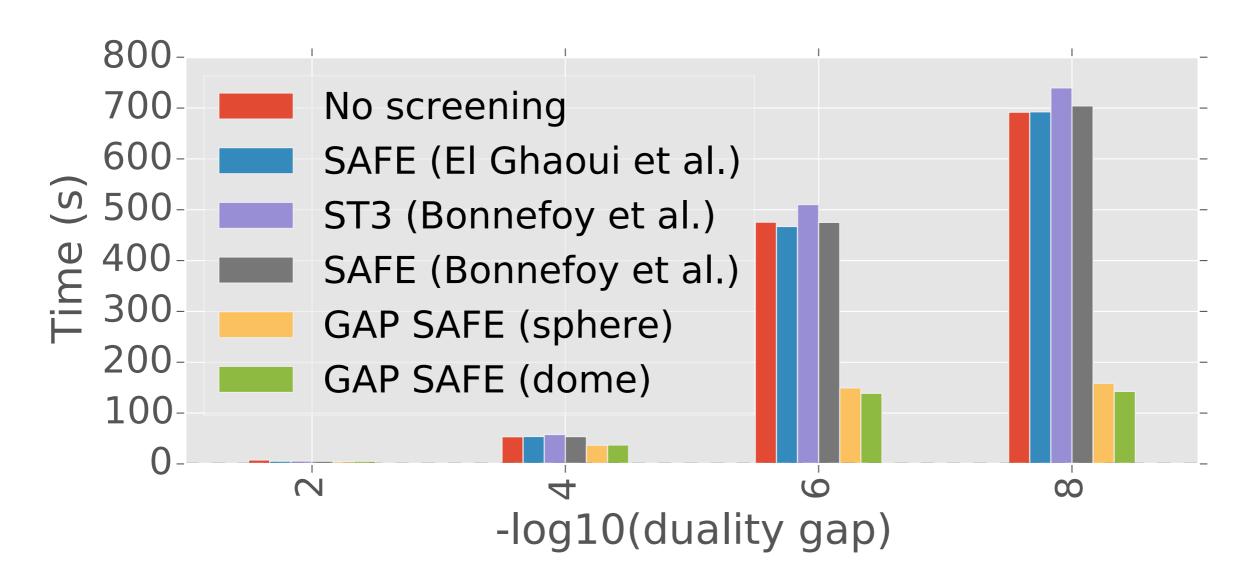


Figure: Proportion of active variables as a function of λ and the number of iterations K on MEG dataset. Better strategies have longer range of λ with (red) small active sets

Results on MEG



Time to reach convergence using various screening rules. Full path with 100 values of λ on logarithmic grid from λ_{max} to $\lambda_{\text{max}}/1000$

If you want to go fast:

Some refs:

Fercoq O., Gramfort A., Salmon J., Mind the duality gap: Safer rules for the Lasso, ICML, 2015

Ndiaye E., Fercoq O., Gramfort A., Salmon J., GAP Safe screening rules for sparse multi-task and multi-class models, NIPS, 2015

Ndiaye E., Fercoq O., Gramfort A., Salmon J., GAP Safe Screening Rules for Sparse-Group Lasso, NIPS, 2016

Post-docs positions available!

erc

Contact

http://alexandre.gramfort.net

GitHub: @agramfort

Twitter: @agramfort

Support

ANR THALAMEEG ANR-14-NEUC-0002-01 NIH R01 MH106174

