Reconstruction simpliciale de variétés via l'estimation d'espaces tangents

Eddie Aamari

INRIA SACLAY, UNIVERSITÉ D'ORSAY

Journées MAS 2016, Grenoble

30/08/2016

Collaboration avec Clément Levrard (Paris Diderot)

Manifold Reconstruction

Input: observations $\mathbb{X}_n = \{X_1, \ldots, X_n\}$ drawn *i.i.d.* on/nearby a manifold $M \subset \mathbb{R}^D$.

Goal: to give an estimator $\hat{M} \subset \mathbb{R}^D$ achieving

- topological guarantees.
- a good geometric approximation

Manifold Reconstruction

Input: a point cloud $\mathbb{X}_n = \{X_1, \ldots, X_n\}$ drawn *i.i.d.* on/nearby a manifold $M \subset \mathbb{R}^D$.

Goal: to give an estimator $\hat{M} \subset \mathbb{R}^D$ with:

- \hat{M} isotopic to M (\Rightarrow homeomorphic)
- Rates of convergence for the Hausdorff distance

$$\mathrm{d}_{\mathrm{H}}(M, \hat{M}) = \left\| \mathrm{d}(\cdot, M) - \mathrm{d}(\cdot, \hat{M}) \right\|_{\infty},$$

where $d(x, K) = \inf_{p \in K} ||x - p||$ is the distance to $K \subset \mathbb{R}^{D}$.

Manifold Reconstruction

Why ?

- Non-linear dimension reduction.
- Recover global data structure information: topology.

Regularity Assumption

 $M \subset \mathbb{R}^D$ a *d*-dimensional submanifold. The *reach* of *M* is the minimal distance to its *medial axis*:

$$\operatorname{reach}(M) = \inf_{x \in M} \operatorname{d}(x, \operatorname{med}(M)),$$

 $med(M) = \{p \in \mathbb{R}^D, p \text{ has several nearest neighbors on } M\}.$

Reach Condition

Assume reach(M) $\geq \rho$ for some fixed $\rho > 0$

Figure : Reach and sampling

Reach Condition

Assume reach(M) $\geq \rho$ for some fixed $\rho > 0$

Figure : Reach and sampling

Fix a finite set $\mathcal{P} \subset \mathbb{R}^D$.

For $p \in \mathcal{P}$, the Voronoi cell Vor(p) is defined as

$$\operatorname{Vor}(\boldsymbol{p}) = \{ \boldsymbol{x} \in \mathbb{R}^{D} : \|\boldsymbol{x} - \boldsymbol{p}\| \leq \|\boldsymbol{x} - \boldsymbol{q}\|, \forall \boldsymbol{q} \in \mathcal{P} \}.$$

Figure : Voronoi diagram

Figure : Delaunay complex

Figure : Tangential Delaunay complex [Boissonnat,Ghosh 2014]

A Reconstruction Theorem

Theorem (Boissonnat, Ghosh 2014)

There exists $\varepsilon_0 = \varepsilon_0(\rho)$ such that for all $\varepsilon \leq \varepsilon_0$, if $\mathcal{P} \subset M$ is

- 2arepsilon-dense: $\mathrm{d}_{\mathrm{H}}(\mathcal{P}, M) \leq 2arepsilon$,
- ε -sparse: $\mathrm{d}(p,\mathcal{P}\setminus\{p\})\geq\epsilon$ for all $p\in\mathcal{P}$,

there exists as computable perturbation $Del^{\omega}(\mathcal{P}, T)$ of $Del(\mathcal{P}, T)$ such that:

- $\mathrm{Del}^{\omega}(\mathcal{P},T)$ and M are isotopic;

-
$$\mathrm{d}_{\mathrm{H}}\left(\mathrm{Del}^{\omega}(\mathcal{P},T),M\right)\leq c_{d,\rho}\varepsilon^{2}.$$

Stability

Theorem (A.,Levrard, 2016)

The result still holds if:

- Small Noise: For all $p \in \mathcal{P}, d(p, M) \lesssim \varepsilon^2$.
- Approximate Tangent Spaces: For all p ∈ P, we use T̂_p instead of T_pM, with ∠(T_pM, T̂_p) ≤ ε.

Figure : Tangent Space Stability

Statistical Model

 $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} P$, where $M = \text{supp}(P) \subset \mathbb{R}^D$ is a connected *d*-submanifold that satisfies:

- *M* has no boundary,
- reach $(M) \ge \rho > 0$,
- P has a density f with respect to the uniform measure on M, with

$$0 < f_{min} \leq f(x) \leq f_{max} < \infty$$

Same model studied in *Minimax Manifold Estimation*, 2012 by Genovese, Perone-Pacifico, Verdinelli & Wasserman.

Tangent Space Estimation: Local P.C.A.

Define \hat{T}_j as the span of the *d* first eigenvectors of

$$\hat{\Sigma}_j(h) = rac{1}{n-1} \sum_{i
eq j} \left(X_i - ar{X}_j
ight) \left(X_i - ar{X}_j
ight)^t \mathbb{1}_{\mathcal{B}(X_j,h)}(X_i),$$

where $\bar{X}_j = \frac{1}{N_j} \sum_{i \neq j} X_i \mathbb{1}_{\mathcal{B}(X_j,h)}(X_i)$ and $N_j = |\mathcal{B}(X_j,h) \cap \mathbb{X}_n|$.

Tangent Space Estimation: Local P.C.A.

Theorem Taking $h \approx \left(\frac{\log n}{n}\right)^{1/d}$, for n large enough, with probability at least $1 - \left(\frac{1}{n}\right)^{2/d}$,

$$\left\{egin{array}{l} \max_{j}\ igtriagge (T_{X_{j}}M, \hat{T}_{j}) \leq ch \ \mathrm{d}_{\mathrm{H}}\left(\mathbb{X}_{n}, M
ight) \leq Ch. \end{array}
ight.$$

Estimation Procedure & Convergence Rate

- 1. Estimate the $T_{X_i}M$'s with local PCA.
- 2. Take as estimator \hat{M} , the Tangential Delaunay Complex of \mathbb{X}_n restricted to the estimated tangent spaces \hat{T}_i 's.

Theorem (A., Levrard 2015)

$$\lim_{n\to\infty}\mathbb{P}\left(\mathrm{d}_\mathrm{H}(M,\hat{M})\leq c\left(\frac{\log n}{n}\right)^{2/d} \text{ and } M\cong \hat{M}\right)=1,$$

where \cong denotes the isotopy equivalence. Moreover, for n large enough,

$$\mathbb{E}d_{\mathrm{H}}(M, \hat{M}) \leq C \left(\frac{\log n}{n}\right)^{2/d}$$

This rate is minimax optimal (Genovese et al. 2011).

A Noisy Model: Clutter Noise

$$X \sim \beta P + (1 - \beta) \mathcal{U},$$

with $0 < \beta < 1$, *P* as previously and $\mathcal{U} \sim Uniform(\mathcal{B}_{\mathbb{R}^D})$.

Figure : A realization of the clutter model

Clustering Before Estimation: Slab Denoising

We define boxes S_j centered at each X_j :

To determine if $X_j \in M$, consider $P_n(S_j) = |S_j \cap \{X_1, \dots, X_n\}|$. As $h \to 0$,

$$P_n(S_j) \sim egin{cases} h^{2D-d} & ext{if} \quad X_j ext{ is far from } M \ h^d \gg h^{2D-d} & ext{if} \quad X_j \in M \end{cases}$$

Clustering Result

Proposition

There exist constants $k(d, D, \beta)$ and $t(d, D, \rho)$ such that, for n large enough, if

$$h=k\left(\frac{\log n}{n}\right)^{\frac{1}{d+1}},$$

then, with probability larger than $1 - \left(\frac{1}{n}\right)^{\frac{2}{d}} - \left(\frac{1}{n}\right)^{2D}$, we have

$$\left(rac{n}{\log n}
ight)P_n(S_j) iggl\{ \leq t \ if \ d(X_j, M) \geq h^2 \ > t \ if \ X_j \in M \ \end{cases}$$

Moreover, on the same event, for every X_j such that $d(X_j, M) \leq Ch$, we have

$$\angle(\hat{T}_j, T_{\pi(X_j)}M) \leq ch$$

Clustering Result

Keeping the sample point X_{j_0} if and only if $P_n(S_{j_0}) > t_n$, w.h.p.

- no point $X_j \in M$ are removed;
- all false negative lie in a neighbourhood of M.

Convergence Result

- 1. Partition the sample into noise/data with slab counting,
- 2. Take \hat{M} to be the Tangential Delaunay of the denoised points, restricted to the estimated tangent spaces \hat{T}_j 's.

Theorem (A., Levrard 2016)

$$\lim_{n\to\infty}\mathbb{P}\left(\mathrm{d}_{\mathrm{H}}(M,\hat{M})\leq c\left(\frac{\log n}{n}\right)^{2/(d+1)} \text{ and } M\cong \hat{M}\right)=1,$$

where \cong denotes the isotopy equivalence. Moreover, for n large enough,

$$\mathbb{E} \mathrm{d}_{\mathrm{H}}(M, \hat{M}) \leq C \left(\frac{\log n}{n}\right)^{2/(d+1)}$$

Convergence Result

- 1. Partition the sample into noise/data with slab counting,
- 2. Take \hat{M} to be the Tangential Delaunay of the denoised points, restricted to the estimated tangent spaces \hat{T}_j 's.

Theorem (A., Levrard 2016)

$$\lim_{n\to\infty}\mathbb{P}\left(\mathrm{d}_{\mathrm{H}}(M,\hat{M})\leq c\left(\frac{\log n}{n}\right)^{2/(d+1)} \text{ and } M\cong \hat{M}\right)=1,$$

where \cong denotes the isotopy equivalence. Moreover, for n large enough,

$$\mathbb{E}d_{\mathrm{H}}(M, \hat{M}) \leq C \left(\frac{\log n}{n}\right)^{2/(d+1)}$$

This rate is not minimax optimal (Genovese et al. 2011)

Iteration: Denoising + Tangent Space Estimation

We iterate $m \ge 1$ times the process of tangent space estimation + slab denoising with (appropriate) decreasing bandwidths.

Theorem (A., Levrard 2016) If $m \ge C_d \log(1/\delta)$,

$$\lim_{n\to\infty}\mathbb{P}\left(\mathrm{d}_{\mathrm{H}}(M,\hat{M})\leq c\left(\frac{\log n}{n}\right)^{2/d-2\delta} \text{ and } M\cong\hat{M}\right)=1,$$

where \cong denotes the isotopy equivalence. Moreover, for n large enough,

$$\mathbb{E}d_{\mathrm{H}}(M, \hat{M}) \leq C \left(\frac{\log n}{n}\right)^{2/d-2\delta}$$

References

- Aamari, Levrard <u>Stability and Minimax Optimality of Tangential</u> Delaunay Complexes for Manifold Reconstruction (Preprint)
- Boissonnat, Ghosh <u>Manifold reconstruction using tangential</u> Delaunay complexes
- Genovese, Perone-Pacifico, Verdinelli, Wasserman <u>Minimax</u> Manifold Estimation