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Search engine building blocks

The architecture of most web search engines consist of the
following main building blocks:

I Crawler or Web Robot;

I Indexing engine;

I Interface handling users’ queries.



Search engine building blocks

Crawler is responsible for discovering new web pages and
updating old pages.

The document collection should be quite fresh and satisfy
current interests of users (Cho and Garcia-Molina, 2000,
2003).



Ephemeral content

Nowadays an overwhelming majority of people find new
information on the web at news sites, blogs, forums and social
networking groups.

However, most information consumed is ephemeral in nature.
That is, people tend to lose their interest in the content in
several days or hours.

The interest in a content can be measured in terms of clicks or
number of relevant search requests.



Ephemeral content

Figure: from (Lefortier, 2013).



Ephemeral content



Model

There are N sources of ephemeral content.

A content at source i ∈ {1, ...,N} is published with an initial
utility modelled by a nonnegative random variable ξi , with
mean ξ̄i , and decreasing exponentially over time with a
deterministic rate µi .

Thus, if source i ’s content is crawled τ time units after its
creation, its utility is given by ξi exp(−µiτ).

The new content arrives at source i according to a
time-homogeneous Poisson process with rate Λi .



Model

We assume that the crawler crawls periodically at multiples of
time T > 0 and has to choose at each such instant which
sources to crawl, subject to a constraint on the number of
sources per period.

When the crawler crawls a content source, we assume that the
crawling is done in an exhaustive manner.

The crawler obtains the following expected reward from
crawling source i :

ui = ΛiE [ξi exp(−µiτ)] =
Λi ξ̄i
µi

(1− exp(−µiT )) . (1)

Set αi = exp(−µiT ).



Model

Let us define the state of source i at time t as the total
expected utility of its content, denoted by Xi(t).

Then, if we do not crawl source i at epoch t (vi(t) = 0), we
obtain zero reward ri(Xi(t), vi(t)) = 0 and the state evolves as
follows:

Xi(t + 1) = αiXi(t) + ui . (2)

On the other hand, if we crawl source i (vi(t) = 1), we obtain
the expected reward ri(Xi(t), vi(t)) = Xi(t) and the next state
of the source is given by

Xi(t + 1) = ui . (3)



Model

Our aim is to maximize the long run average reward

lim sup
t↑∞

N∑
i=1

1

t

t∑
m=0

r(Xi(t), vi(t)) (4)

subject to the constraint

N∑
i=1

Civi(t) = M , (5)

for a prescribed M > 0.



Whittle index

With large M the model quickly becomes intractable even
numerically, so-called “curse of dimensionality”.

Fortunately, there is a concept of Whittle index (Whittle,
1988) which helps to decompose multi-dimensional problems.



Examples of applications:

I sensor scheduling (Nino-Mora, Vilar)

I multi-UAV coordination (Ny, Dahleh, Feron)

I congestion control (Avrachenkov, Ayesta, Doncel, Jacko)

I cognitive radio (Liu, Zhao)

I real time wireless multicast (Raghunathan, Borkar, Cao,
Kumar)



Whittle index

The first idea is to substitute the strict constraint (5) with the
average constraint

lim sup
t↑∞

N∑
i=1

1

t

t∑
m=0

Civi(t) = M (6)

By the way, this becomes an instance of Average Reward
Markov Decision Process with Constraints (Piunovskiy 1997,
Altman, 1999).



Whittle index

Then, we can use the technique of Lagrange multiplier

lim sup
t↑∞

1

t

t∑
s=0

E [ri(Xi(t))vi(s) + λ(vi(s)−M/N)]. (7)

with the associated dynamic programming equation for the
above average reward problem

Vi(x)+β = max
(
ri(x)+

∫
pi(dy |x)Vi(y), λ+

∫
qi(dy |x)Vi(y)

)
.

(8)



Whittle index

In our particular case, the dynamic programming equation
takes the form:

V (x) + β = max (Cλ + V (αx + u), x) (9)

= max
v∈{0,1}

(
vx + (1− v)(Cλ + V (αx + u))

)
(10)



Whittle index

The problem is called indexable if the set of passive states

B(λ) :=

{
x : λ +

∫
qi(dy |x)Vi(y) ≥ ri(x) +

∫
pi(dy |x)Vi(y)

}
.

increases monotonically from φ to the full state space as λ
increases from −∞ to ∞.
Then, for each source i , the Whittle index is defined as

γi(xi) :=

{λ′ : λ′ +

∫
qi(dy |xi)V (y) = ri(xi) +

∫
pi(dy |xi)V (y)}.



Whittle index

The Whittle index policy is to set vi(t) = 1 for the i with the
top M indices and vj(t) = 0 for the rest.

Under quite general conditions, the Whittle index policy has
been shown asymptotically optimal:

I by (Weber & Weiss, 1990) for symmetric case;

I by (Verloop, 2015) for finite number of types of bandits.



Whittle index

Our main result is

Theorem The problem of crawling ephemeral content sources
is indexable with the Whittle index given by

γi(xi) =
1

Ci
(ηi(xi)((1− αi)xi − ui) + xi) ,

where

ηi(xi) =

⌈
log+

αi

(
ui − (1− αi)xi

ui

)⌉
,

and

ui =
Λi ξ̄i
µi

(1− exp(−µiT )) .



Whittle index

Proof key points:

I Proving key properties of the value function first for the
discount case and then passing to the limit;

I The sets B and Bc are of the form [u, a) and [a, u∗], resp.,
for some a ∈ [u, u∗];

I The optimal policy for separate arm is of threshold type;

I The value of the threshold monotonically increase with λ.



Numerical example

Consider an illustrative example with four information sources.
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Figure: Content value as a function of time.



Numerical example
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Figure: The case of M = 1.

Note that if one crawls only the “best” source 1, he obtains
the average reward 179.79. In contrast, the index policy
involving two sources results in average reward 254.66.



Numerical example
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Figure: The case of M = 2.

It is interesting that now the policy becomes much less regular.



Numerical example (stochastic setting)

When we observe the states in the stochastic setting, we can
still apply the deterministic Whittle index.

Even though in the stochastic case the deterministic Whittle
index is just an heuristic, it performs quite well. Take M = 1.

Round Robin policy: 208

Greedy policy, maxi
Λi ξ̄i
µi

(1− exp(−µi × TLastCrawli)): 260

Deterministic Whittle index: 285



Numerical example (stochastic setting)
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Figure: The case of M = 2 (stochastic model).

In the stochastic setting source 1 is crawled from time to time.



Other contributions

Some other developments not described in the talk:

I We proved Whittle indexability in the fully stochastic case;

I Described numerical procedures for the Whittle index in the
stochastic case (unfortunately, there is no nice explicit
expression);

I Online dual descent type method for the relaxed control
problem.



Thank you!

Any questions are welcome.


