Elsa Bernard

CBIO Mines ParisTech, Institut Curie, INSERM U900

Journées MAS 2016

Institut national de la santé et de la recherche médicale

- (alternative) splicing. Functional importance, human diseases, therapies.
- RNA-seq. Next generation sequencing of RNA molecules.
- sparse regression. Estimating splicing variants.

- (alternative) splicing. Functional importance, human diseases, therapies.
- RNA-seq. Next generation sequencing of RNA molecules.
- sparse regression. Estimating splicing variants.

- (alternative) splicing. Functional importance, human diseases, therapies.
- RNA-seq. Next generation sequencing of RNA molecules.
- sparse regression. Estimating splicing variants.

- (alternative) splicing. Functional importance, human diseases, therapies.
- RNA-seq. Next generation sequencing of RNA molecules.
- sparse regression. Estimating splicing variants.

Split genes and splicing of introns

"The discovery of split genes has been of fundamental importance for today's basic research in biology, as well as for more medically oriented research concerning the development of cancer and other diseases"

Nobel Prize Press Release, 1993.

Alternative splicing produces transcript isoforms

Alternative splicing produces transcript isoforms

- The splicing pattern determines the final genetic message.
- In human, 28k genes give 120k known transcript isoforms (Pal et al., 2012).

The isoform identification and quantification problem

RNA transcript isoforms

Given a biological sample, can we:

- Identify the isoforms expressed by each gene?
- Quantify their abundances?

Functional importance of alternative splicing

• Developmental regulation of alternative splicing in Drosophila:

Alternative Splicing of Ultrabithorax Transcripts

http://orchid.bio.cmu.edu/research.html

(Pal et al., 2012)

RNA-seq: shear RNA into pieces and sequence

RNA-seq: shear RNA into pieces and sequence

RNA-seq: shear RNA into pieces and sequence

RNA-seq and alternative splicing

The isoform deconvolution problem

The one-sample case

One-sample: can we perform accurate de novo isoform reconstruction for one given RNA-seq sample?

The multi-sample case

Multi-sample: can we improve isoform detection by using several samples simultaneously?

FlipFlop Fast Lasso based Isoform Prediction as a FLOw Problem

2) the multi-sample case

Isoform detection from multiple RNA-seq samples

3) clinical application

FlipFlop Fast Lasso based Isoform Prediction as a FLOw Problem

2) the multi-sample case

Isoform detection from multiple RNA-seq samples

3) clinical application

FlipFlop Fast Lasso based Isoform Prediction as a FLOw Problem

2) the multi-sample case

Isoform detection from multiple RNA-seq samples

3) clinical application

FlipFlop Fast Lasso based Isoform Prediction as a FLOw Problem

2) the multi-sample case

Isoform detection from multiple RNA-seq samples

3) clinical application

Genome-guided isoform reconstruction

- Input: spliced alignment of reads against reference genome
- Goal: reconstruct transcripts (multi-assembly problem)

What's new?

- Input: spliced alignment of reads against reference genome
- Goal: reconstruct transcripts (multi-assembly problem)

- No need to filter candidate transcript isoforms
- Paster than existing methods that solve the same problem
- Adapted to long reads
 Particular splicing graph

R package (open-access, maintained, parallelizable)

- Flow methods that solve the same problem
- Adapted to long reads
 Particular splicing graph

R package (open-access, maintained, parallelizable)
Bioconductor

- No need to filter candidate transcript isoforms
- Section 2 Faster than existing methods that solve the same problem
- Adapted to long reads Particular splicing graph
- R package (open-access, maintained, parallelizable)
 Bioconductor

Flow methods

- No need to filter candidate transcript isoforms
- Paster than existing methods that solve the same problem
- Adapted to long reads Particular splicing graph

R package (open-access, maintained, parallelizable)
Bioconductor

Isoforms are paths in a graph

• Splicing graph for a gene with 5 exons:

• FlipFlop graph: 1 type of read \leftrightarrow 1 node

Graph adapted to long reads

• Splicing graph for a gene with 5 exons:

• FlipFlop graph: 1 type of read \leftrightarrow 1 node

lsoforms are paths in a graph

• Splicing graph for a gene with 5 exons:

• FlipFlop graph: one path with abundance θ_1

Isoforms are paths in a graph

• Splicing graph for a gene with 5 exons:

• FlipFlop graph: another path with abundance θ_2 ...

n exons $\rightarrow \sim 2^n$ paths/candidate isoforms

feature selection problem with $\sim 10^3$ candidates for 10 exons and $\sim 10^6$ for 20 exons

Minimum path cover

- Cufflinks, CLASS
- X do not use read counts

Sparse regression

- IsoLasso, NSMAP, SLIDE, CEM, iReckon, MiTie, FlipFlop, CIDANE
- ✓ use read counts

Isoform deconvolution with the ℓ_1 -norm penalization

• Estimate θ sparse by solving:

sparsity-inducing effect you select a few isoforms among many candidates

• Computationally challenging

- ightarrow lsoLasso: strong filtering
- ightarrow NSMAP, SLIDE: number of exons cut-off

• FlipFlop

- ightarrow no filtering
- ightarrow no exon restrictions

Isoform deconvolution with the ℓ_1 -norm penalization

• Estimate θ sparse by solving:

sparsity-inducing effect you select a few isoforms among many candidates

• Computationally challenging

- \rightarrow IsoLasso: strong filtering
- \rightarrow NSMAP, SLIDE: number of exons cut-off

• FlipFlop

- \rightarrow no filtering
- ightarrow no exon restrictions

The isoform deconvolution problem

$$\min_{\theta} \mathcal{L}(\theta) + \lambda \|\theta\|_1 ,$$

is solvable in **polynomial time** with the number of nodes of the splicing graph.

Ideas:

- the sum of isoform abundances corresponds to a flow on the graph
- **2** reformulation as a **convex cost flow problem** (Mairal and Yu, 2012)
- I recover isoforms by flow decomposition algorithm
Combinations of isoforms are flows

(a) Reads at every node corresponding to one isoform.

(b) Reads at every node after adding another isoform.

- Linear combinations of isoforms \Rightarrow
- Flow value on every edges

⇒ Flow Decomposition (linear time algorithm)

Flow value on every edges

Paths with given value/abundance

A Novel Min-Cost Flow Method for Estimating Transcript Expression with RNA-Seq. RECOMB-2013.

Equivalent flow problem (simpler!)

• $\mathcal{L}(\theta)$ depends only on the values of the flow on the vertices

•
$$\|\theta\|_1 = \sum_{\text{path } p} \theta_p = f_t$$

• Therefore,

$$\min_{\theta} \mathcal{L}(\theta) + \lambda \|\theta\|_1 \quad \text{is equivalent to} \quad \min_{f \text{ flow}} \tilde{\mathcal{L}}(f) + \lambda f_t$$

Isoform detection = Path selection problem

 $\sim 2^n$ variables (all paths in the splicing graph)

$\$

Equivalent network flow problem

 $\sim rac{n^2}{2}$ variables (all nodes of the splicing graph)

ŀ

Network flow algorithms

Efficient algorithms. Polynomial time.

Human Simulation: precision / recall

hg19, 1137 genes on chr1, 1million 200 bp single-end reads by transcript levels. Simulator: http://alumni.cs.ucr.edu/~liw/rnasegreadsimulator.html

Speed Trial

hg19, 1137 genes on chr1, 1million reads by exon levels.

Simulator: http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.html

$\begin{array}{rcl} \text{FlipFlop} & \rightarrow & \text{transcripts reconstruction over an exponential number of} \\ & & \text{candidates in polynomial time} \end{array}$

- http://cbio.ensmp.fr/flipflop/
- http://cbio.ensmp.fr/flipflop/experiments.html
- R package
 - > source("http://bioconductor.org/biocLite.R")
 - > biocLite("flipflop")

E. Bernard, L. Jacob, J. Mairal and J.-P. Vert. Efficient RNA isoform identification and quantification from RNA-seq data with network flows. *Bioinformatics*, 2014.

1) the one-sample case

FlipFlop Fast Lasso based Isoform Prediction as a FLOw Problem

2) the multi-sample case

Isoform detection from multiple RNA-seq samples

3) clinical application

Quantify abnormal splicing from targeted RNA-seq

Multi-dimensional case

Can we find a sparse set of paths that explains the multi-dimensional read counts?

Multi-dimensional case

Can we find a sparse set of paths that explains the multi-dimensional read counts?

n

• each isoform defines a group $\theta_p = \{\theta_p^t, t \in \llbracket 1, T \rrbracket\}$

• the multi-sample loss is the sum of the independent losses

$$\mathcal{L}(oldsymbol{ heta}) = \sum_{t=1}^T \mathrm{loss}(y_t, heta_t)$$

 \bullet ideally we want to solve the NP-hard ℓ_0 problem

$$\min_{\{\boldsymbol{\theta}_{p}\}} \mathcal{L}(\boldsymbol{\theta}) + \lambda \sum_{p \in \mathcal{P}} \mathbf{1}_{\{\boldsymbol{\theta}_{p} \neq \mathbf{0}\}}$$

• each isoform defines a group $\theta_p = \{\theta_p^t, t \in \llbracket 1, T \rrbracket\}$

• the multi-sample loss is the sum of the independent losses

$$\mathcal{L}(oldsymbol{ heta}) = \sum_{t=1}^T ext{loss}(y_t, heta_t)$$

• instead we solve the group-lasso convex relaxation

$$\min_{\{\boldsymbol{\theta}_{p}\}} \mathcal{L}(\boldsymbol{\theta}) + \lambda \sum_{\boldsymbol{p} \in \mathcal{P}} \left\| \boldsymbol{\theta}_{p} \right\|_{2}$$

Simulation: GroupLasso vs Merging

modENCODE data Time course development of D.melanogaster

$\begin{array}{rcl} \mbox{FlipFlop} & \rightarrow & \mbox{transcript reconstruction using several samples simultaneously} \\ & \mbox{leads to more statistical power} \end{array}$

- http://cbio.ensmp.fr/flipflop/details.html
- E. Bernard, L. Jacob, J. Mairal, E. Viara and J.-P. Vert. A convex formulation for joint RNA isoform detection and quantification from multiple RNA-seq samples. *BMC Bioinformatics*, 2015.

1) the one-sample case

FlipFlop Fast Lasso based Isoform Prediction as a FLOw Problem

2) the multi-sample case

Isoform detection from multiple RNA-seq samples

3) clinical application

Quantify abnormal splicing from targeted RNA-seq

Molecular diagnosis and splicing

• Various splicing enhancing and silencing motifs:

• Variants disrupting/creating these consensus sequences can affect normal splicing

 \Rightarrow molecular diagnosis: correct interpretation of these variants on splicing is imperative for genetic counseling

Molecular diagnosis and splicing

• Various splicing enhancing and silencing motifs:

Variants disrupting/creating these consensus sequences can affect normal splicing

Development of a new diagnostic tool

- time and cost-effective identification and quantification of transcripts using targeted high-throughput RNA-seq
- extension of sparse regression techniques to a new experimental design

Promising results on BRCA1

- BRCA1: Breast Cancer susceptibility gene
- Involved in DNA repair pathway and cell cycle
- High number of splicing events (regulated in a cell-cycle- and cell-type-specific manner)

ORIGINAL ARTICLE Human Molecular Genetics, 2016, Vol. 0, No. 0 1-13 Combined genetic and splicing analysis of BRCA1 c.[594-2A>C; 641A>G] highlights the relevance of naturally occurring in-frame transcripts for developing disease gene variant classification algorithms Miguel de la Hoya^{1,*}, Omar Soukarieh², Irene López-Perolio¹, Ana Vega³,

Promising results on BRCA1

- BRCA1: Breast Cancer susceptibility gene
- Involved in DNA repair pathway and cell cycle
- High number of splicing events (regulated in a cell-cycle- and cell-type-specific manner)

ORIGINAL ARTICLE Human Melecular Genetics, 2016, Vol. 0, No. 0 1-13 Combined genetic and splicing analysis of BRCA1 c.[594-2A>C; 641A>G] highlights the relevance of naturally occurring in-frame transcripts for developing disease gene variant classification algorithms Micuel de la Hova^{1,*}. Omar Soukarieh², Irene López-Perolio¹, Ana Vega³.

Accurate quantification of overlapping splicing events:

31

Thanks

Laurent Jacob

Eric Viara

Julien Mairal

JP Vert

Elodie Girard

Part 1: one-sample approach

FlipFlop Fast Lasso based Isoform Prediction as a FLOw Problem

Technical details

Poisson Loss:

$$\mathcal{L}(\theta) = \sum_{u \in V} \left[NI_u \left(\sum_{\text{path } p \ni u} \theta_p \right) - \mathbf{y}_u \log \left(NI_u \sum_{\text{path } p \ni u} \theta_p \right) \right]$$

Flow Decomposition:

$$f_{uv} = \sum_{\text{path } p \ni (u,v)} \theta_p$$

$$\Rightarrow f_v = \sum_{u \in V} f_{uv} = \sum_{\text{path } p \ni v} \theta_p$$

Convex Cost Flow:

$$\min_{f \text{flow}} \sum_{u \in V} [NI_u f_u - \mathbf{y}_u \log(f_u)] + \lambda f_t$$

Solved using ϵ -relaxation method (Bertsekas 1998)

4) $l_{\text{left}} < L$, $l_{\text{right}} < L$

 $l_i = l_{\text{left}} + l_{\text{right}} - L + 1$

Real Data

Human: 50 million 75bp reads.

Precision-Recall curves on real data

Speed comparison on real data

GC bias - Precision-Recall curve hg19, chr1, 4140 transcripts, 2million 150bp single-end reads Simulator: FluxSimulator http://sammeth.net/confluence/display/SIM/Home

Model selection: set of solutions minimizing $\mathcal{L}(\theta) + \lambda \|\theta\|_1$ for different values of $\lambda \to BIC$ criteria

Exon stratification

Tuning

Stability study

Human Simulation: Abundances

hg19, 1137 genes on chr1, 1million 75 bp single-end reads by transcript levels.

Simulation: Deviation

hg19, 1137 genes on chr1, 1million 75 bp single-end reads by transcript levels.

Part 2: multi-sample approach

Isoform detection from multiple RNA-seq sample

GroupLasso vs State-of-Art 1

GroupLasso vs State-of-Art 2

Multi-samples simulation Simulator: FluxSimulator http://sammeth.net/confluence/display/SIM/Hone

Simulation: read length

