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o (alternative) splicing. Functional importance, human diseases, therapies.

o RNA-seq. Next generation sequencing of RNA molecules.

@ sparse regression. Estimating splicing variants.



Split genes and splicing of introns
DNA gene == exon 1 m-m exon 3 jmmm

transcription
&
splicing

RNA transcript exon 1 - exon 3

“The discovery of split genes has been of fundamental importance for
today’s basic research in biology, as well as for more medically oriented
research concerning the development of cancer and other diseases”

Nobel Prize Press Release, 1993.
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Alternative splicing produces transcript isoforms
DNA gene == exon 1 m-m exon 3 jmmm

alternative
splicing

exon 1 - exon 3 exon 1 | exon 3

RNA transcript isoforms

@ The splicing pattern determines the final genetic message.

@ In human, 28k genes give 120k known transcript isoforms (Pal et al., 2012).



The isoform identification and quantification problem

DNA gene

exon 1

exon 1 - exon 3

Given a biological sample, can we:

alternative
splicing

intron intron
exon 3 fmmm

exon 1 | exon 3

RNA transcript isoforms

@ identify the isoforms expressed by each gene?

@ quantify their abundances?



Functional importance of alternative splicing

@ Developmental regulation of alternative splicing in Drosophila:

Alternative Splicing of Ultrabithorax Transcripts
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http://orchid.bio.cmu.edu/research. html
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RNA-seq: shear RNA into pieces and sequence
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RNA-seq: shear RNA into pieces and sequence

parallel short read sequencing
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RNA-seq: shear RNA into pieces and sequence

parallel short read sequencing

input RNA input cDNA
->
selection fragmentation =
—_— _— <+
reverse size selection - - -
transcription amplification ->
<+
<+ e

100-200bp read

genome TACCG



RNA-seq and alternative splicing

— exon 1 — exon 2 exon 3 —
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The isoform deconvolution problem

— exon 1 exon 2 exon 3 —
—
—
— —— —— — — ——
—— — — —— —— —
— —— — — ——
—— — i —
— — — ——
[ T - L o
g oo —-—
oo DoIoIoIoIIIIIIIIIIIIIIIIIIIIIIIIT -

sEEEs .. [ L] ] ssses
|2

B R R
— Sy




The one-sample case

Sample t

Isoforms t?

One-sample: can we perform accurate de novo isoform reconstruction for
one given RNA-seq sample?



The multi-sample case

Sample 1 Sample t Sample T

l

Isoforms 1? Isoforms t? Isoforms T?

Multi-sample: can we improve isoform detection by using several samples
simultaneously?



1) the one-sample case

FlipFlop Fast Lasso based Isoform
Prediction as a FLOw Problem




1) the one-sample case 2) the multi-sample case

FlipFlop Fast Lasso based Isoform Isoform detection from multiple
Prediction as a FLOw Problem RNA-seq samples




1) the one-sample case 2) the multi-sample case
FlipFlop Fast Lasso based Isoform Isoform detection from multiple
Prediction as a FLOw Problem RNA-seq samples

3) clinical application

Quantify abnormal splicing from
targeted RNA-seq




1) the one-sample case

FlipFlop Fast Lasso based Isoform
Prediction as a FLOw Problem




Genome-guided isoform reconstruction

@ Input: spliced alignment of reads
against reference genome

(multi-assembly problem) |2

@ Goal: reconstruct transcripts {1111
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Cufflinks NSMAP CLIIQ

FlipFlop MiTie
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CIDANE iReckon StringTie



@ Input: spliced alignment of reads
against reference genome

@ Goal: reconstruct transcripts

(multi-assembly problem) |2

] — | —34%

MonteBello CLASS
IsoLasso SLIDE

CEM
Cufflinks NSMAP CLIIQ

CIDANE iReckon StringTie

Scripture
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Contributions

@ No need to filter candidate transcript isoforms
@ Faster than existing methods that solve the same problem
© Adapted to long reads

@ R package (open-access, maintained, parallelizable) } Bioconductor

flipflop

B-I O con d uc to r Fast lasso-based isoform prediction as a flow problem

OPEN SOURCE SOFTWARE FOR BIOINFORMATICS  Bioconductor version: : Relesse (3.0)




Isoforms are paths in a graph

@ Splicing graph for a gene with 5 exons:



Graph adapted to long reads

@ Splicing graph for a gene with 5 exons:

o FlipFlop graph: 1 type of read ++ 1 node
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Isoforms are paths in a graph

@ Splicing graph for a gene with 5 exons:

o FlipFlop graph: another path with abundance 0, ...




Select a small number of paths?

n exons — ~ 2" paths/candidate isoforms

feature selection problem with ~ 10° candidates for 10 exons
and ~ 10° for 20 exons

Minimum path cover Sparse regression
o Cufflinks, CLASS @ IsolLasso, NSMAP, SLIDE,
X do not use read counts CEM, iReckon, MiTie,

FlipFlop, CIDANE
v use read counts




Isoform deconvolution with the ¢;-norm penalization

o Estimate 6 sparse by solving:

min £(0) + A0
SN~~~ N——

fit to the data sparsity-inducing effect
big do you well explain you select a few isoforms
vector! read counts with the among many candidates

selected isoforms?
e.g: minus log-likelihood



Isoform deconvolution with the ¢;-norm penalization

o Estimate 6 sparse by solving:

min £(0) + A0
SN~~~ N——

fit to the data sparsity-inducing effect
big do you well explain you select a few isoforms
vector! read counts with the among many candidates

selected isoforms?
e.g: minus log-likelihood

o Computationally challenging
— IsoLasso: strong filtering
— NSMAP, SLIDE: number of exons cut-off

o FlipFlop
— no filtering
— no exon restrictions



Fast isoform deconvolution

The isoform deconvolution problem
main L(0) + A0,

is solvable in polynomial time with the number of nodes of the splicing graph.

Ideas:
@ the sum of isoform abundances corresponds to a flow on the graph
@ reformulation as a convex cost flow problem (Mairal and Yu, 2012)

© recover isoforms by flow decomposition algorithm



Combinations of isoforms are flows

(b) Reads at every node after adding another isoform.

(a) Reads at every node corresponding to one isoform.

@ Linear combinations of isoforms = Flow value on every edges

@ Flow value on every edges Paths with given value/abundance
Flow Decomposition

(linear time algorithm)

ﬁ A Novel Min-Cost Flow Method for Estimating Transcript Expression with
RNA-Seq. RECOMB-2013.



Equivalent flow problem (simpler!)

e L(6) depends only on the values of the flow on the vertices

e ||0||1 = Zpath pep = fi’

@ Therefore,

mein L(0) + N|6]|]1 is equivalent to  min £(f) + \f;

f flow



FlipFlop Summary

Isoform detection = Path selection problem

~ 2" variables (all paths in the splicing graph)

0

Equivalent network flow problem

~ %2 variables (all nodes of the splicing graph)

Network flow algorithms

Efficient algorithms. Polynomial time.

|
3



Human Simulation: precision / recall

hgl9, 1137 genes on chrl, 1million 200 bp single-end reads by transcript levels.

Simulator: http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.html

RECALL

A
o

N
9]

200 bp (1M reads)

40 60 80
PRECISION

M IsolLasso
A Cufflinks

®FlipFlo
INEMAR

W1 transcript

2 transcripts

M 3-4 transcripts

W 5-7 transcripts
8-43 transcripts

100


http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.html

Speed Trial

hgl9, 1137 genes on chrl, 1million reads by exon levels.
Simulator: http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.html

® 2-5 exons 5-10 exons 10-20 exons 20-116 exons
el e+05-
3 IsoLasso
31 e+04- Igluffll: ilnks
'2“ e+03 NSMAP
“ole+02-
E

1e+01-

CPU t
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http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.html

One-sample case summary

FlipFlop — transcripts reconstruction over an exponential number of
candidates in polynomial time

@ http://cbio.ensmp.fr/flipflop/

@ http://cbio.ensmp.fr/flipflop/experiments.html

@ R package
> source("http://bioconductor.org/biocLite.R")
> biocLite("flipflop")

ﬁ E. Bernard, L. Jacob, J. Mairal and J.-P. Vert. Efficient RNA isoform
identification and quantification from RNA-seq data with network
flows. Bioinformatics, 2014.

21


http://cbio.ensmp.fr/flipflop/
http://cbio.ensmp.fr/flipflop/experiments.html

2) the multi-sample case

Isoform detection from multiple
RNA-seq samples

22



Multi-dimensional case

Sample 1 ++++ Samplet

Multi-dimensional

splicing graph |:“::|
2

23



Multi-dimensional case

Multi-dimensional
splicing graph

E"]

[;] D

Can we find a sparse set of paths that explains
the multi-dimensional read counts?

23



Group-Lasso strategy

O01...04...0r
abundance matrix
?

read count matrix isoform matrix

Y- Yt .- Yr ’77‘

6 10 8 1 1 1

5 5 2 1 1 0

3.7...61 X~ I N O R A

3 7 6 1 0] 1

3 3 2 (0] 1 0

6 10 8 1 1 1

24



Group-Lasso strategy

01...0,...0r
i[2 2 of}
abundance matrix
13 3 2]}
{1 5 6t
read count matrix isoform matrix l
Y- Yt Yr
= =" |P|
6 10 8 1 1 1
5 5 2 1 1 0
3...7...61 X 414,804,811,
3 7 6 1 0 1
3 3 2 0 1 0
6 10 8 1 1 1
I patand ravon

24



More formally

abundance matrix

read count matrix isoform matrix
YooYyt

6 10 8
5 5 2
3..7...6

- ww
w
®© o

n

o each isoform defines a group 6, = {0}, t € [1, T]}
@ the multi-sample loss is the sum of the independent losses

-
£(6) = 3" loss(yz, 6)
t=1
@ ideally we want to solve the NP-hard ¢y problem

{n;ir; ﬁ(@) + A Z 1{9’)#0}

pEP

25



More formally

01...0,...00
2 2 off
abundance matrix
33 2]
1 5 6ff
read count matrix isoform matrix
YoYU yr ‘P‘
& 10 8
5 5 2
3..7...6

- ww
w
®© o

o each isoform defines a group 6, = {0}, t € [1, T]}
@ the multi-sample loss is the sum of the independent losses

-
L£(0) = Z loss(yz, 0¢)
t=1
@ instead we solve the group-lasso convex relaxation

min LO)+ A 65l

peEP
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Simulation: GroupLasso vs Merging

Vte{l,..., T}, suppf; = suppl,

Support
75
Methods
— FlipFlop + GroupLasso
— — FlipFlop + Merge
Samples
() —_—
250 —
(5] —3
) —4
LL —5
—6
—_—7
—28
—9
25 10
0

1000

10 100
Number of reads x 1le-4
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modENCODE data

Time course development of D.melanogaster

40-

Setting

= independent

= = multi-samples
Methods

= Cufflinks + Cuffmerge
== FlipFlop + GroupLasso
— FI;;I:gFIop + Merge

== MiTie

Fscore

3
Samples

27



Multi-sample case summary

FlipFlop — transcript reconstruction using several samples simultaneously
leads to more statistical power

@ http://cbio.ensmp.fr/flipflop/details.html

ﬁ E. Bernard, L. Jacob, J. Mairal, E. Viara and J.-P. Vert. A convex
formulation for joint RNA isoform detection and quantification from
multiple RNA-seq samples. BMC Bioinformatics, 2015.

28


http://cbio.ensmp.fr/flipflop/details.html

3) clinical application

Quantify abnormal splicing from
targeted RNA-seq

29



Molecular diagnosis and splicing

@ Various splicing enhancing and silencing motifs:

@ Variants disrupting/creating these consensus sequences can affect normal
splicing

= molecular diagnosis: correct interpretation of these variants on splicing is
imperative for genetic counseling

30



Molecular diagnosis and splicing

@ Various splicing enhancing and silencing motifs:

@ Variants disrupting/creating these consensus sequences can affect normal
splicing

Development of a new diagnostic tool

@ time and cost-effective identification and quantification of transcripts using
targeted high-throughput RNA-seq

@ extension of sparse regression techniques to a new experimental design

30



Promising results on BRCA1

@ BRCAL: Breast Cancer susceptibility gene
@ Involved in DNA repair pathway and cell cycle

@ High number of splicing events (regulated in a cell-cycle- and
cell-type-specific manner)

ORIGINAL ARTICLE Human Molecular Genetics, 2016, Vol. 0, No. 0 1-13
Combined genetic and splicing analysis of BRCA1
c.[594-2A>C; 641A>G] highlights the relevance of
naturally occurring in-frame transcripts for developing
disease gene variant classification algorithms

Miguel de la Hoya'*, Omar Soukarieh?, Irene Lépez-Perolio’, Ana Vega®,

31



Promising results on BRCA1

@ BRCAL: Breast Cancer susceptibility gene
@ Involved in DNA repair pathway and cell cycle

@ High number of splicing events (regulated in a cell-cycle- and
cell-type-specific manner)

ORIGINAL ARTICLE Human Molecular Genetics, 2016, Vol. 0, No. 0 1-13
Combined genetic and splicing analysis of BRCA1
c.[594-2A>C; 641A>G] highlights the relevance of
naturally occurring in-frame transcripts for developing
disease gene variant classification algorithms

Miguel de la Hoya'*, Omar Soukarieh?, Irene Lépez-Perolio’, Ana Vega®,

Accurate quantification of overlapping splicing events:

M inclusion|_|splice|  both inclusion and splice[Jexons 8+9 spliced [ Jexon 9 spliced

B ----
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Laurent Jacob JP Vert
Julien Mairal '

)
-
Elodie Girard
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Supplementary Slides

Part 1: one-sample approach
FlipFlop Fast Lasso based Isoform Prediction as a FLOw Problem
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Technical details

Poisson Loss:

LO=D "N, | D 0] —yulog [N, > 6,

ueV path pSu path pSu
Flow Decomposition:

=Y 0,

path p>(u,v)

= f,=> fu= Y 0

ueV path pSv
Convex Cost Flow:

pf]k!)?v ;/ [N/ufu —Yu |Og(fu)] + )‘ﬂ

Solved using e-relaxation method (Bertsekas 1998)

31



Effective length

——
_

2) hew < L, bigne > L [ I Ay
3) hett > L, lrigne < L E.:ED li = Liight

4) lett < L, liignt < L .j:D li = bet + lrignt — L+ 1

31



Graph adapted to long reads

o FlipFlop graph:
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Graph adapted to long reads

o FlipFlop graph:
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Performance increases with coverage

100

75

50
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Extension to paired-end reads OK

100 1 1M r irs) 125 bp (1M read pairs) 150 bp (1M read pairs) 17 1M r i
[ N [ 2 L ) &
®4 °a °s N
O 75 = u L] " |1 transcripts
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O 50 - I at - 8-43 transcripts
w ° | I?
o ° ° LR ¥tiin
a A - A A ®FlipFlop
25 - "
4 4 4 4
0 60 80 0 60 8BREC|S|0 0 60 80 0 60 80
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Real Data

Human: 50 million 75bp reads.

SRR065504 PAIRED-END AERR361241 SINGLE-END
24 A L
W FPKM>1
4 ° B FPKM>3
—
220 e m A ° B FPKM>5
i} - M IsoLasso
o m PY A A cufflinks
16 A - Y @ FlipFlop
u °
30 40 { 40 50

0 30
PRECISION
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Precision-Recall curves on real data

RECALL
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Speed comparison on real data

510

=

speed (minutes)
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00
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GC bias - Precision-Recall curve

hgl9, chrl, 4140 transcripts, 2million 150bp single-end reads
Simulator: FluxSimulator nttp://sammetn.net/confluence/display/sIn/Hone

Model selection: set of solutions minimizing £(6) + A||0]|1 for different values of
A — BIC criteria

NO GC BIAS GC BIAS
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Exon stratification
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RECALL
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Stability study
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Human Simulation: Abundances

9, 1137 genes on chrl, 1million 75 bp single-end reads by transcript levels.

1 transcript 2 transcripts 3-5 transcripts  5-7 transcripts
12-0.993 12=0.014. . 12=0.001 . 12=0.003

10000-

1000~

100-

osse0s|

r2=0.055 = r2=0.767 r2=0.378 r2=0.518

10000-

syuPny

r2=0.994 r2=0.67 r2=0.273 r2=0.538

Estimated abundances

doj4di4

r2=0.894 r2=0.537 r2=0.388 r2=0.152

10 100 1000 10000 10 100 1000 _ 10000 10 100 1000 10000 10 100 1000 10000

Real abundances
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Simulation: Deviation

hgl9, 1137 genes on chrl, 1million 75 bp single-end reads by transcript levels.

1 transcript 2 transcripts 3-5 transcripts 5-7 transcripts

1e+04-

l l I I ElsoLasso

Te+01; m Cufflinks
mFlipFlop
j - ®mSLIDE
=1e-02- |

Error in % deviation from true value
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Supplementary Slides

Part 2: multi-sample approach
Isoform detection from multiple RNA-seq sample
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Why Aggregating can be bad
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Toy simulation

Ve {l,..., T} 0: =0,

80

Methods
— FlipFlop + GroupLasso
— — FlipFlop + Merge

Samples
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1000

10 100
Number of reads x 1le-4
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75

uplLasso vs State-of-
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uplLasso vs State-of-
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Vte{l,..., T}, suppf; = suppl,
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Multi-samples simulation
Simulator: FIuxSimulator . smem e consencersisptay/smione

. == Cufflinks + Cuffmerge == FlipFlop + Merge

40 == FlipFlop + GroupLasso ==MiTie
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= =tuned

3
Samples
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Simulation: read length

[WCufflinks + Cuffmerge BMFlipFlop + GroupLasso WBMFlipFlop + Merge IiMiTie (region—filter40 max—-num-trans10)
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