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Goals and Definitions

Heritability

Heritability of a biological trait: Proportion of phenotypic variance
explained by genetic factors.

Estimation of heritability in human genetics: better understanding of
complex diseases, further research for genetic causes...

Estimation of heritability in animal and vegetal genetics:
determination of optimal genotypes to produce a valuable resource.
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Goals and Definitions

Examples of data sets - Quantitative traits

- Vector of observations : Y “

¨
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˚

˝
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- Predictors : X “
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- Matrix of SNPs : W “

¨
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Framework of genetic studies, n „ 2000 individuals, N „ 500000 SNPs
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Model

Sparse Linear Mixed Model

Y “ Xβ ` Zu ` e

where
- Y is a vector n ˆ 1 of observations
- Xβ are the fixed effects
- Z is a random matrix n ˆ N, centered and normalized version of W .
- u and e are the random effects

ui
i .i .d .
„ p1´ qqδ0 ` qN p0, σ‹u2q , for all i and e „ N

`

0, σ‹e 2IdRn
˘

Ź Estimation of η‹ “ Nqσ‹2u
Nqσ‹2u `σ

‹2
e
.
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Model

Heritability estimator
Up to considering the projection of Y onto (Im X)K, we focus on the model

Y “ Zu ` e

In the case q “ 1 (no sparsity),

Y |Z „ N
`

0, η‹σ‹2ZZ 1{N ` p1´ η‹qσ‹2IdRn
˘

.

η̂ is defined as the maximizer of the log-likelihood conditionally to Z :

Lnpηq “ ´ log
ˆ

1
n
řn

i“1
rY 2

i
ηpλi´1q`1

˙

´ 1
n
řn

i“1 log pηpλi ´ 1q ` 1q

where rY “ U 1Y and U ZZ 1
N U 1 “ diagpλ1, ..., λnq.

Method implemented in the R package HiLMM.
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Theoretical results

Theoretical result

Theorem
Let Y “ pY1, . . . ,Ynq

1 satisfy the sparse LMM with η‹ ą 0 and assume
that the random variables Zi ,j are i.i.d. N p0, 1q.
Then for any q P p0, 1s, as n,N Ñ8 such that n{N Ñ a ą 0,

?
npη̂ ´ η‹q

converges in distribution to a centered Gaussian random variable with
variance

τ2pa, η‹, qq “ 2
rσ2pa, η‹q ` 3 a2η‹2

rσ4pa, η‹q

ˆ

1
q ´ 1

˙

Spa, η‹q

where rσ2pa, η‹q and Spa, η‹q are positive functions, for which
closed-form expressions are available.
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Numerical experiments

Simulation study
Influence of sparsity q Influence of a “ n{N
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Figure: Boxplots of η̂ for different values of q when a “ 0.01 (right) and different
values of a “ n

N when q “ 1(left).

Ź When a decreases, that is N ąą n, the variance of our heritability
estimator increases.
Ź The presence of null components (q ă 1) does not influence the
estimations.
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Variable selection

Variable selection steps

Step 1: Empirical correlation computation (SIS, Fan & Lv
(2008)) . It consists in reducing the number of relevant columns of
Z by trying to remove those associated to null components in the
vector u. The matrix reduced to the most significant columns is
denoted Zred .

Step 2: The LASSO criterion. It consists in minimizing with
respect to u the following criterion:

Critλpuq “ }Y ´ Zredu}22 ` λ}u}1

The choice of λ is made according to the stability selection method
(Meinshausen, 2010).
§ R Package EstHer: Variable selection + Heritability Estimation

+ Computation of standard errors
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Variable selection

Choice of the threshold in the stability selection step

Ź Each choice of threshold gives a set of selected variables, and then an
estimated value of the heritability.
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Figure: Absolute difference |η‹ ´ η̂| for thresholds from 0.6 to 0.9 and for 100
(left) and 10000 (right) causal SNPs.

Ź For 100 causal SNPs, there is a range of thresholds between 0.7 and 0.85
which provide a good estimation for heritability, with 0.78 as optimal threshold.
Ź For 10000 causal SNPs, there does not exist such a threshold.
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Variable selection

First results of the variable selection method
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Figure: Estimation of η‹ using our variable selection method with threshold 0.78
and using no variable selection.

Ź For 100 causal SNPs, selecting variables reduces substantially the variance.
Ź For 10000 causal SNPs, selecting variables creates an important bias.
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Variable selection

Results for different thresholds
η‹ “ 0.4 η‹ “ 0.5 η‹ “ 0.6
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Figure: Estimation of the heritability with 95% confidence intervals obtained
without selection and with selection and for thresholds between 0.7 and 0.85.

Ź 100 causal SNPs: two close thresholds provide similar estimations.
Ź 10000 causal SNPs: a small change in the threshold causes substantial
differences in the estimations.
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Variable selection

A criterion to decide whether to apply the variable
selection or not

Table: Mean value of the number (and proportion) of overlapping confidence
intervals for 16 thresholds from 0.7 to 0.85.

η‹ 100 causal SNPs 1000 causal SNPs 10000 causal SNPs
0.4 12.2 (0.76) 6.6 (0.41) 6.9 (0.43)
0.5 14.9 (0.93) 6.6 (0.41) 6.3 (0.39)
0.6 16 (1) 7.8 (0.48) 7.2 (0.45)

Ź Criterion: If the mean proportion of overlapping thresholds is greater
than 0.6, we perform variable selection with threshold 0.78, otherwhise we
estimate directly the heritability.
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Variable selection

Application of the criterion

100 causal SNPs 1000 causal SNPs 10000 causal SNPs
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Figure: Comparison of our method with the criterion, the methods with and without
selection.

Ź Introducing the criterion allows our estimator to have a smaller variance than
the estimator without selection when the number of causal SNPs is small, and to
have the same behavior when the number of causal SNPs is high.
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Variable selection

Application to brain volume data

Data from the project Imagen: volume of the different regions of the brain
from „2000 adolescents in Europe.
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Figure: Different regions of the brain (Toro et al, 2014) and the estimation of
heritability for these different regions’ volumes.
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Binary data

Extension to binary data

How to define heritability for binary traits?

Liability model (Falconer, 1965)

Yi “ 1tLiątu

where
L “ Zu` e,

with L “ pL1, . . . ,Lnq, u „ N p0, σ‹2u INq and e „ N p0, σ‹2e Inq

The heritability is defined "at the liability scale", that is

η‹ “
Nσ‹2u

Nσ‹2u ` σ‹2e
.
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Binary data

Case-control studies

Specificity of case-control studies: the cases are highly oversampled.
The number of patients and controls are similar even for rare diseases.
Least square method (Golan, 2014) which takes into account this
oversampling of the cases:

η̂ “ argmin
ηPp0,1q

ÿ

i‰j
ppipj ´ Erpipj |Z, S “ 1sq2

˝ pi “
Yi´P?
Pp1´Pq

˝ p prevalence in the study
˝ tS “ 1u if individuals i and j are in the study.

Ñ Approximation of Erpipj |Z, S “ 1s.

Anna Bonnet (AgroParisTech) Estimation of heritability 29 août 2016 15 / 20



Binary data

Approach

Eppi pj |Z, S “ 1q “ 1´ P
P PpYi “ Yj “ 1|Z, S “ 1q ´ PpYi ‰ Yj |Z, S “ 1q

`
P

1´ P PpYi “ Yj “ 0|Z, S “ 1q.

Approximation of PpYi “ Yj “ 1|Zq, PpYi “ Yj “ 0|Zq, PpYi ‰ Yj |Zq.

PpYi “ Yj “ 1|Zq “
ż 8

t

ż 8

t
f px , yqdxdy ,

where f px , yq “ 1
2π |Σ

pNq
|
´ 1

2 exp
"

´
px , yqΣpNq´1

px , yqt

2

*

.

with ΣpNq “

˜

1` η‹ Bi?
N η‹

Ci,j
?

N
η‹

Ci,j
?

N 1` η‹ Bj
?

N

¸

where Bi “ Opp1q, Bj “ Opp1q and Ci,j “ Opp1q.
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Binary data

Approximation and corresponding estimator

First order approximation:

Eppipj |Z ,S “ 1q “ cGi ,jη
‹

where
- Gi ,j “

1
N

N
ř

i“1
Zi ,kZj,k

- c a constant which depends on the prevalence K in the population,
the prevalence P in the study and the threshold t.
The heritability estimator has an explicit form

η̂ “

ř

i‰j
pipjGi ,j

ř

i‰j
G2

i ,j
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Binary data

Consistency of the heritability estimator

Theorem (Consistency)

η̂ is a consistent estimator of η‹, that is

η̂
P
Ñ η‹

when n Ñ `8, N Ñ `8 and n{N Ñ a ą 0, under mild assumptions on
the matrix Z .
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Binary data

Numerical results

Comparison of the estimators η̂p1q and η̂p2q obtained respectively with
the first and second order approximations of Erpipj |Z,Si “ Sj “ 1s.
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Figure: Performance of η̂p1q and η̂p2q for n “ 100, N “ 10000 and different values of k:
0.1 (left), 0.01 (middle) and 0.005 (right).

Ź The numerical results obtained with the two approximations are similar.
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Perspectives

Conclusions and perspectives

Conclusions

- Quantitative traits: we proposed a hybrid estimator which includes a
selection step in very sparse scenarios and behaves like the maximum
likelihood estimator otherwhise.

- Binary traits: we showed the consistency of the heritability estimator
proposed by Golan et al. (2014).

Perspectives

- Quantitative traits: study the biological pathways between the lists
of selected SNPs.

- Binary traits: consider sparsity, build accurate confidence intervals.
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Perspectives
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