

Processus ponctuel : ensemble localement fini de points

Processus ponctuel sans interaction

Processus ponctuel binomial μ mesure de probabilité sur \mathbb{R}^d X_1, \dots, X_n i.i.d. de loi μ $\mathcal{E} := \{X_1, \dots, X_n\}$ $\blacktriangleright #(\mathcal{E} \cap B_1)$ v.a. binomiale $(n, \mu(B_1))$

▶ $#(\mathcal{E} \cap B_1), \cdots, #(\mathcal{E} \cap B_\ell)$ non indépendantes

Processus ponctuel de Poisson

- μ mesure σ -finie sur \mathbb{R}^d
- μ dite intensité du processus
- ${\mathcal P}$ ensemble localement fini tel que
- ▶ $#(P \cap B_1)$ v.a. de Poisson $(\mu(B_1))$
- ▶ $#(\mathcal{P} \cap B_1), \cdots, #(\mathcal{P} \cap B_\ell)$ indépendantes

Modèle Booléen :

des objet indépendants (boule, droite, polygone...) attachés aux points

C. Lantuéjoul, Exact simulation of a Boolean model (2013)

Graphe géométrique aléatoire

Graphe géométrique aléatoire :

graphe construit à partir des points avec des règles géométriques déterministes en général

D. Coupier & V. C. Tran

The 2d-Directed Spanning Forest is almost surely a tree (2013)

Polytope aléatoire : modèle binomial uniforme

K corps convexe de \mathbb{R}^d

 $(X_k, k \in \mathbb{N}^*)$:= indépendantes et de loi uniforme dans K

```
\overline{K}_n := \operatorname{Conv}(X_1, \cdots, X_n)
```


 K_{50} , K disque

K₅₀, K carré

Polytope aléatoire : modèle binomial uniforme

K corps convexe de \mathbb{R}^d

 $(X_k, k \in \mathbb{N}^*)$:= indépendantes et de loi uniforme dans K

```
\overline{K}_n := \operatorname{Conv}(X_1, \cdots, X_n)
```


 K_{100} , K disque

K₁₀₀, K carré

Polytope aléatoire : modèle binomial uniforme

K corps convexe de \mathbb{R}^d

 $(X_k, k \in \mathbb{N}^*)$:= indépendantes et de loi uniforme dans K

```
\overline{K}_n := \operatorname{Conv}(X_1, \cdots, X_n)
```


K₅₀₀, K disque

K₅₀₀, K carré

Polytope aléatoire : modèle poissonnien uniforme

K corps convexe de \mathbb{R}^d

 \mathcal{P}_{λ} , $\lambda > 0$:= processus ponctuel de Poisson d'intensité λdx

 $K_{\lambda} := \mathsf{Conv}(\mathcal{P}_{\lambda} \cap K)$

K₅₀₀, K disque

K₅₀₀, K carré

Polytope aléatoire : modèle poissonnien gaussien

$$arphi_d(x):=rac{1}{(2\pi)^{d/2}}e^{-\|x\|^2/2}$$
, $x\in\mathbb{R}^d$, $d\ge 2$

 \mathcal{P}_{λ} , $\lambda > 0$:= processus ponctuel de Poisson d'intensité $\lambda \varphi_d(x) \mathrm{d}x$

Polytopes aléatoires : état de l'art et nouveaux calculs de variance

Cas du disque $\mathbb D$: idée de preuve par limite d'échelle

Cas du carré : idée de preuve par limite d'échelle

Collaborations avec Joseph Yukich (Lehigh University, États-Unis) & Tomasz Schreiber (Toruń University, Pologne)

Polytopes aléatoires : état de l'art et nouveaux calculs de variance Grandeurs considérées Résultats asymptotiques connus en espérance Résultats asymptotiques connus du second ordre Principaux nouveaux résultats : variances limites

Cas du disque \mathbb{D} : idée de preuve par limite d'échelle

Cas du carré : idée de preuve par limite d'échelle

Grandeurs considérées

- $f_k(\cdot)$: nombre de faces k-dimensionnelles
- ▶ $Vol(\cdot)$: volume
- $V_k(\cdot)$: k-ième volume intrinsèque

Les V_k sont définis par la formule de **Steiner** :

$$\operatorname{Vol}(K + B(0, r)) = \sum_{k=0}^{d} r^{d-k} \kappa_{d-k} V_k(K), \quad \text{où } \kappa_d := \operatorname{Vol}(\mathbb{B}^d)$$

$$d = 2 : A(K + B(0, r)) = A(K) + P(K)r + \pi r^{2}$$

Résultats asymptotiques connus en espérance

Relation de B. Efron (1965)
$$\mathbb{E}f_0(\overline{K}_n) = n\left(1 - \frac{\mathbb{E}\mathrm{Vol}(\overline{K}_{n-1})}{\mathrm{Vol}(K)}\right)$$

Uniforme, K lisse $\mathbb{E}[f_k(K_{\lambda})] \underset{\lambda \to \infty}{\sim} c_{d,k} \int_{\partial K} \kappa_s^{\frac{1}{d+1}} ds \lambda^{\frac{d-1}{d+1}}$

 $\kappa_s := \mathsf{courbure} \ \mathsf{gaussienne} \ \mathsf{de} \ \partial K$

Uniforme, K polytope $\mathbb{E}[f_k(K_{\lambda})] \underset{\lambda \to \infty}{\sim} c'_{d,k} F(K) \log^{d-1}(\lambda)$ F(K) := nombre de drapeaux de K

$$\begin{array}{ll} \textit{Gaussien} & \mathbb{E}[f_k(K_\lambda)] \underset{\lambda \to \infty}{\sim} c_{d,k}^{\prime} \, \log^{\frac{d-1}{2}}(\lambda) \end{array}$$

A. Rényi & R. Sulanke (1963), H. Raynaud (1970), R. Schneider & J. Wieacker (1978), F. Affentranger & R. Schneider (1992)

Résultats asymptotiques connus du second ordre

► Théorèmes centraux limites

Encadrements de variances

Uniforme, K lisse $\operatorname{Var}[f_k(K_{\lambda})] = \Theta(\lambda^{\frac{d-1}{d+1}})$

Uniforme, K polytope $\operatorname{Var}[f_k(K_{\lambda})] = \Theta(\log^{d-1}(\lambda))$

Gaussien
$$\operatorname{Var}[f_k(K_{\lambda})] = \Theta(\log^{\frac{d-1}{2}}(\lambda))$$

M. Reitzner (2005), I. Bárány & V. Vu (2007), I. Bárány & M. Reitzner (2010)

Principaux nouveaux résultats : variances limites

 $\begin{array}{lll} \textit{Uniforme, K lisse} & \operatorname{Var}[f_k(K_{\lambda})] \underset{\lambda \to \infty}{\sim} c_{d,k} \int_{\partial \kappa} \kappa_s^{\frac{1}{d+1}} ds \ \lambda^{\frac{d-1}{d+1}} \\ \kappa_s := \text{courbure gaussienne de } \partial \kappa \\ & \textit{Uniforme, K polytope simple} & \operatorname{Var}[f_k(K_{\lambda})] \underset{\lambda \to \infty}{\sim} c_{d,k}' f_0(\kappa) \ \log^{d-1}(\lambda) \\ F(\kappa) := \text{ nombre de drapeaux de } \kappa \\ & \textit{Gaussien} & \operatorname{Var}[f_k(K_{\lambda})] \underset{\lambda \to \infty}{\sim} c_{d,k}' \log^{\frac{d-1}{2}}(\lambda) \end{array}$

Remarques

- Dépoissonnisation dans les cas uniforme lisse et gaussien
- Théorèmes centraux limites
- Cas uniforme dans la boule et gaussien : principe d'invariance pour le volume

Polytopes aléatoires : état de l'art et nouveaux calculs de variance

Cas du disque \mathbb{D} : idée de preuve par limite d'échelle Calcul de la variance de $f_k(K_\lambda)$ Changement d'échelle Caractérisation duale des points extrémaux Action du changement d'échelle Convergence des covariances de scores

Cas du carré : idée de preuve par limite d'échelle

Calcul de l'espérance de $f_k(K_\lambda)$

Décomposition:

$$\mathbb{E}[f_k(\mathcal{K}_\lambda)] = \mathbb{E}\left[\sum_{x\in\mathcal{P}_\lambda}\xi(x,\mathcal{P}_\lambda)
ight]$$

$$\xi(x, \mathcal{P}_{\lambda}) := \begin{cases} \frac{1}{k+1} \#k \text{-face contenant } x & \text{si } x \text{ extrémal} \\ 0 & \text{sinon} \end{cases}$$

formule de Mecke-Slivnyak

$$\mathbb{E}[f_k(\mathcal{K}_{\lambda})] = \lambda \int_{\mathbb{D}} \mathbb{E}[\xi(x, \mathcal{P}_{\lambda} \cup \{x\})] \mathrm{d}x$$

Calcul de la variance de $f_k(K_\lambda)$

$$\begin{aligned} \operatorname{Var}[f_{k}(\mathcal{K}_{\lambda})] &= \mathbb{E}\left[\sum_{x\in\mathcal{P}_{\lambda}}\xi^{2}(x,\mathcal{P}_{\lambda}) + \sum_{x\neq y\in\mathcal{P}_{\lambda}}\xi(x,\mathcal{P}_{\lambda})\xi(y,\mathcal{P}_{\lambda})\right] - \left(\mathbb{E}[f_{k}(\mathcal{K}_{\lambda})]\right)^{2} \\ &= \lambda \int_{\mathbb{D}}\mathbb{E}[\xi^{2}(x,\mathcal{P}_{\lambda}\cup\{x\})]dx \\ &\quad + \lambda^{2} \iint_{(\mathbb{D})^{2}}\mathbb{E}[\xi(x,\mathcal{P}_{\lambda}\cup\{x,y\})\xi(y,\mathcal{P}_{\lambda}\cup\{x,y\})]dxdy \\ &\quad - \lambda^{2} \iint_{(\mathbb{D})^{2}}\mathbb{E}[\xi(x,\mathcal{P}_{\lambda}\cup\{x,y\})]\mathbb{E}[\xi(y,\mathcal{P}_{\lambda}\cup\{y\})]dxdy \\ &= \lambda \int_{\mathbb{D}}\mathbb{E}[\xi^{2}(x,\mathcal{P}_{\lambda}\cup\{x\})]dx \\ &\quad + \lambda^{2} \iint_{(\mathbb{D})^{2}}\operatorname{Cov}(\xi(x,\mathcal{P}_{\lambda}\cup\{x\}),\xi(y,\mathcal{P}_{\lambda}\cup\{y\}))dxdy \end{aligned}$$

Question. Limites de $\mathbb{E}[\xi(x, \mathcal{P}_{\lambda})]$ et Cov $(\xi(x, \mathcal{P}_{\lambda}), \xi(y, \mathcal{P}_{\lambda}))$? *Réponse*. Définition de scores limites dans un nouvel espace

Changement d'échelle :

$$T^{\lambda}: \left\{ egin{array}{ccc} \mathbb{D}\setminus\{0\} &\longrightarrow & \mathbb{R} imes\mathbb{R}_+ \ x=(r, heta) &\longmapsto & (\lambda^{rac{1}{3}} heta,\lambda^{rac{2}{3}}(1-r)) \end{array}
ight.$$

Image d'un score : ξ^(λ)(T^λ(x), T^λ(P_λ)) := ξ(x, P_λ)
 Convergence de P_λ : T^λ(P_λ) → P où

 $\mathcal{P}:=$ processus ponctuel de Poisson d'intensité $\mathrm{d} x$ dans $\mathbb{R} imes \mathbb{R}_+$

Quand K_{λ} contient l'origine,

$$\begin{split} & x \in \mathcal{P}_{\lambda} \text{ extrémal} \\ & \iff \exists D \text{ droite d'appui de } \mathcal{K}_{\lambda}, x \in D \\ & \iff \exists y \in \partial B\left(\frac{x}{2}, \frac{\|x\|}{2}\right) \text{ tel que 0 et } \mathcal{P}_{\lambda} \setminus \{x\} \text{ du même côté de } (x + y^{\perp}) \\ & \iff \text{le pétale de } x, B\left(\frac{x}{2}, \frac{\|x\|}{2}\right) \not\subset \bigcup_{x' \in \mathcal{P}_{\lambda} \setminus \{x\}} B\left(\frac{x'}{2}, \frac{\|x'\|}{2}\right) \end{split}$$

Action du changement d'échelle

$$\mathsf{\Pi}^\uparrow:=\{(\mathsf{v},\mathsf{h})\in\mathbb{R} imes\mathbb{R}_+:\mathsf{h}\geq rac{\mathsf{v}^2}{2}\},\ \mathsf{\Pi}^\downarrow:=\{(\mathsf{v},\mathsf{h})\in\mathbb{R} imes\mathbb{R}_+:\mathsf{h}\leq -rac{\mathsf{v}^2}{2}\}$$

Demi-plan	Translaté de Π [↓]
Frontière de l'enveloppe	Union de portions of paraboles vers le bas
Pétale	Translaté de $\partial\Pi^{\uparrow}$
Point extrémal	$(x + \Pi^{\uparrow})$ non recouverte

Convergence des covariances de scores

Scores ξ^(∞)(w, P), w ∈ ℝ × ℝ₊, définis dans le modèle limite
 Ces scores stabilisent exponentiellement.

Rayon de stabilisation $R(w, \mathcal{P})$: plus petit r > 0 tel que $\xi^{(\infty)}(w, \mathcal{P}) = \xi^{(\infty)}(w, \mathcal{P} \cap \text{Cyl}(w, r))$

$$\mathbb{P}[R(w,\mathcal{P})>t]\leq ce^{-rac{t}{c}},\quad t>0$$

► Convergence simple dans l'intégrale

$$\mathbb{E}[\xi^{(\lambda)}(w, T^{\lambda}(\mathcal{P}_{\lambda}))] \to \mathbb{E}[\xi^{(\infty)}(w, \mathcal{P})]$$

et

$$\mathsf{Cov}(\xi^{(\lambda)}(w, T^{\lambda}(\mathcal{P}_{\lambda})), \xi^{(\lambda)}(w', T^{\lambda}(\mathcal{P}_{\lambda}))) \to \mathsf{Cov}(\xi^{(\infty)}(w, \mathcal{P}), \xi^{(\infty)}(w', \mathcal{P}))$$

Polytopes aléatoires : état de l'art et nouveaux calculs de variance

Cas du disque \mathbb{D} : idée de preuve par limite d'échelle

Cas du carré : idée de preuve par limite d'échelle

Corps flottant Additivité de la variance sur les sommets Changement d'échelle au voisinage d'un sommet Caractérisation duale des points extrémaux Action du changement d'échelle

Corps flottant

 $v(x) := \inf \{ \operatorname{Vol}(K \cap H^+) : H^+ \text{ demi-plan contenant } x \}, x \in K \}$

Corps flottant : $K(v \ge t) := \{x \in K : v(x) \ge t\}$

 $K(v \ge t)$ est un corps convexe et $K(v \ge 1/\lambda)$ est *proche* de K_{λ} .

Corps flottant

 $v(x) := \inf \{ \operatorname{Vol}(K \cap H^+) : H^+ \text{ demi-plan contenant } x \}, x \in K \}$

Corps flottant : $K(v \ge t) := \{x \in K : v(x) \ge t\}$

 $K(v \ge t)$ est un corps convexe et $K(v \ge 1/\lambda)$ est *proche* de K_{λ} .

Comparaison entre K_{λ} et le corps flottant

Espérance

Bárány & Larman (1988):

 $c\operatorname{Vol}(\mathcal{K}(\mathbf{v}\leq 1/\lambda))\leq \operatorname{Vol}(\mathcal{K})-\mathbb{E}[\operatorname{Vol}(\mathcal{K}_{\lambda})]\leq C\operatorname{Vol}(\mathcal{K}(\mathbf{v}\leq 1/\lambda))$

Bárány & Reitzner (2010):

$$c\lambda^{-1}\mathrm{Vol}(\mathcal{K}(\mathsf{v}\leq 1/\lambda))\leq \mathrm{Var}[\mathrm{Vol}(\mathcal{K}_{\lambda})]$$

Sandwiching

Bárány & Reitzner (2010b):

$$\mathbb{P}[\partial K_{\lambda} \not\subset [K(v \ge s) \setminus K(v \ge T)]] = O\left((\log(\lambda))^{-16}
ight)$$

 $s := rac{c}{\lambda(\log(\lambda))^{17}}, \ T := c' rac{\log(\log(\lambda))}{\lambda}$

Additivité de la variance sur les sommets

- $\blacktriangleright \mathcal{V}(K) := \text{ensemble des sommets de } K$
- ► $p_{\delta}(v) := parallélépipède$ de volume δ^d en v où $\delta = \exp(-(\log^{\frac{1}{2}}(\lambda)))$

►
$$Z_{v} := (k+1)^{-1} \sum_{x \in \mathcal{P}_{\lambda} \cap p_{\delta}(v)} \#\{k\text{-faces containing } x\}$$

$$\operatorname{Var}[f_k(\mathcal{K}_{\lambda})] = \sum_{\nu \in \mathcal{V}(\mathcal{K})} \operatorname{Var}[Z_{\nu}] + o(\operatorname{Var}[f_k(\mathcal{K}_{\lambda})]).$$

- K identifié à (0,∞)² après changement d'échelle
 Corps flottant K(v = t/λ) = {(z₁, z₂) ∈ (0,∞)² : z₁z₂ = t/2λ}
 V := {(y₁, y₂) ∈ ℝ² : y₁ + y₂ = 0} ≅ ℝ
- Changement d'échelle :

$$\mathcal{T}^{(\lambda)}: \left\{ \begin{array}{ll} (0,\infty)^2 & \longrightarrow & V \times \mathbb{R} \\ (z_1,z_2) & \longmapsto & \left(\mathsf{proj}_V(\mathsf{log}(z)), \frac{1}{2} \mathsf{log}(\lambda z_1 z_2) \right) \end{array} \right.$$

- K identifié à (0,∞)² après changement d'échelle
 Corps flottant K(v = t/λ) = {(z₁, z₂) ∈ (0,∞)² : z₁z₂ = t/2λ}
 V := {(y₁, y₂) ∈ ℝ² : y₁ + y₂ = 0} ≅ ℝ
- Changement d'échelle :

$$T^{(\lambda)}: \left\{ \begin{array}{ll} (0,\infty)^2 & \longrightarrow & V \times \mathbb{R} \\ (z_1,z_2) & \longmapsto & (\operatorname{proj}_V(\log(z)), \frac{1}{2}\log(\lambda z_1 z_2)) \end{array} \right.$$

- K identifié à (0,∞)² après changement d'échelle
 Corps flottant K(v = t/λ) = {(z₁, z₂) ∈ (0,∞)² : z₁z₂ = t/2λ}
 V := {(y₁, y₂) ∈ ℝ² : y₁ + y₂ = 0} ≅ ℝ
- Changement d'échelle :

- K identifié à (0,∞)² après changement d'échelle
 Corps flottant K(v = t/λ) = {(z₁, z₂) ∈ (0,∞)² : z₁z₂ = t/2λ}
 V := {(y₁, y₂) ∈ ℝ² : y₁ + y₂ = 0} ≅ ℝ
- Changement d'échelle :

$$T^{(\lambda)}: \begin{cases} (0,\infty)^2 & \longrightarrow & V \times \mathbb{R} \\ (z_1,z_2) & \longmapsto & (\operatorname{proj}_V(\log(z)), \frac{1}{2}\log(\lambda z_1 z_2)) \end{cases}$$

• Convergence de \mathcal{P}_{λ} : $T^{\lambda}(\mathcal{P}_{\lambda}) \xrightarrow{\mathsf{D}} \mathcal{P}$ où

 $\mathcal{P}:=$ processus ponctuel de Poisson dans $\mathbb{R} imes\mathbb{R}$ de mesure d'intensité $\sqrt{d}e^{dh}\mathrm{d}v\mathrm{d}h$

Chaque point $z \in (0, \infty)^d$ engendre un pétale S(z), soit l'ensemble des points de tangence des courbes $K(v = \frac{t}{\lambda})$, t > 0 avec les droites contenant z.

z est cône-extrémal ssi S(z) n'est pas recouvert par les autres pétales.

Action du changement d'échelle

$$egin{aligned} & G(m{v}) := \log\left(\operatorname{ch}(rac{m{v}}{\sqrt{2}})
ight), \quad m{v} \in V \ & \Pi^{\uparrow} := \{(m{v}, h) \in \mathbb{R} imes \mathbb{R} : h \geq G(m{v})\}, \ & \Pi^{\downarrow} := \{(m{v}, h) \in \mathbb{R} imes \mathbb{R} : h \leq -G(m{v})\} \end{aligned}$$

Corps flottants	Demi-plans horizontaux
Frontière de l'enveloppe	Union de portions de pseudo-cones
Pétale	Translaté de $\partial \Pi^{\uparrow}$
Point extrémal	$(x + \Pi^{\uparrow})$ non recouvert

Merci pour votre attention !