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Context

Goal: perform the prediction of the electricity

Idea: better performance for disaggregated (at the good level) load '

~+ we focus here on the clustering

Difficulty: high variability of the individual consumptions

' A model for the effect of aggregation on short term load forecasting, Sevlian, R.A. and
Rajagopal, R., IEEE 2014



Data?

v

Irish consumption of electricity

v

4225 consumers (residentials or small enterprises)

v

Consumption observed every 30 minutes, from January 1st to
December 31st 2010

Access to external information (tariffs, temperature, .. .)
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2 Electricity smart metering customer behaviour trials findings report, Commission for energy
regulation, Dublin, 2011



1. Method

2. Aggregated consumption

3. Individual consumption



Method 3

Finite mixture of regression models:

s(ylx) = Z T @(BieX, Tk),

Procedure
» Selection of relevant variables (Group-Lasso estimator)
» Refitting by MLE
» Model selection (slope heuristic)
» Clustering (MAP principle)

3Model-based clustering for high-dimensional data. Application to functional data, Devijver,
ADAC 2016
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Wavelets

0.5

-0.5

02
Ayo

-0.2

0
02
Dyo
0.2
02
Dso
02
0.1
Dyo
0.1
0.1
Dyo
0.1

Figure: Decomposition of the signal onto the Haar basis at level 4.



Aggregated dataset

Sample of the considered dataset
» n =338 days
» X: consumption of the day d — 1
» Y: consumption of the day d
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Our procedure: model with 2 clusters



Aggregated dataset

Model selection: use of the slope heuristic

Penalized likelihood criterion
pen(m) = xDp,

with D, the number of parameters to estimate in the model m.
How to calibrate x?

L

Model dimension
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Figure: Use of the dimension jump.



Aggregated dataset

Interesting models
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Aggregated dataset

Estimation of the parameters

18, - B,




Aggregated dataset

Interpretation of the clusters
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Time

Interpretation | Mon. | Tue. | Wed. | Thur. | Fri. | Sat. | Sun.
week 0.88 | 0.96 | 0.94 | 0.98 | 0.96 0 0
weekend 0.12 | 0.04 | 0.06 | 0.02 | 0.04 1 1

Table: We summarize the proportion of day type in each cluster, and interpret it.



Individual consumption

Data

» n =487 consumers

» X: consumption of Tuesday January 5th 2010, projected onto Haar basis

» Y: consumption of Wednesday January 6th 2010, projected onto Haar

basis

Consumption
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Our method:
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Model 1 (2 clusters) and Model 2 (5 clusters)



Individual consumption

A posteriori probabilities for each observation
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Individual consumption

Interpretation of the clusters along a year
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Figure: Daily mean consumptions of the cluster centers along the year for 2 (top) and
5 clusters (bottom).



Individual consumption

Estimation of the parameters
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Figure: Clustering representation for the two medium consumer clusters.



Individual consumption

Interpretation of the clusters according to the temperature
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Figure: Daily mean consumptions of the cluster centers in function of the daily mean
temperature for 2 (on the left) and 5 clusters (on the right).



Individual consumption

Interpretation of the clusters according to the tariffs
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Figure: Average (over time) week of consumption for the centers of each cluster.



Conclusion

» Unsupervised clustering method for regression data in high-dimension
» Theoretical result proving the model selection step*
» Real data analysis

“Devijver, E., Finite mixture regression: a sparse variable selection by model selection for
clustering, EJS, 2015
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Thank you for your attention!

» E. Devijver, Y. Goude et J.-M. Poggi, Clustering electricity consumers
using high- dimensional regression mixture models, 2015, submitted,
arXiv:1507.00167

» Matlab code: http://git.auder.net/?p=select.git

“Devijver, E., Finite mixture regression: a sparse variable selection by model selection for
clustering, EJS, 2015



