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Introduction

Let K be a compact star-shaped body in Rd , then the functional

‖x‖K = inf
{
t > 0

∣∣ x ∈ tK
}

is a quasi-norm.

Let X be a random vector in Rd and R ≥ 0. We define the
concentration function of X with respect to K and R as

ρKR (X ) = sup
x∈Rd

P
(
X ∈ x + RK

)
.

In other words, this is the Lévy concentration function of X w.r.t

K and R in Rd .

Let V = {v1, . . . , vn} be a multi-set of vectors in Rd , and let
η1, . . . , ηn be iid random signs. We consider the following random
vector S =

∑n
j=1 ηjvj .

Our goal is to study the following object ρKR (S).
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Littlewood-Offord problems

Assume d = 1. In this case, v1, . . . , vn are real numbers.

The random variable S =
∑n

j=1 ηjvj is a discrete random variable
which typically takes 2n values.

However, if there are various arithmetic relations between the step
sizes v1, . . . , vn, then many of the 2n possible sums collide, and
certain values may then arise with much higher probability.

To measure this, consider the Lévy concentration function of S

ρ
|·|
0 (S) = sup

x∈R
P(|S − x | = 0) = sup

x∈R
P(S = x).

Intuitively, this probability measures the amount of additive
structure present between the v1, . . . , vn.
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To measure this, consider the Lévy concentration function of S

ρ
|·|
0 (S) = sup

x∈R
P(|S − x | = 0) = sup

x∈R
P(S = x).

Intuitively, this probability measures the amount of additive
structure present between the v1, . . . , vn.



Littlewood-Offord problems (cont.)

There are two (opposing) problems in the subject:

I (Forward Littlewood-Offord problem) Given some structural
assumptions on v1, . . . , vn, what bounds can one place on

ρ
|·|
0 (S)?

I (Inverse Littlewood-Offord problem) Given some bounds on

ρ
|·|
0 (S), what structural assumptions can one then conclude

about v1, . . . , vn?

When K = Bd
2 , it is known that the asymptotic behaviour of

ρ
Bd

2
R (S) as n→∞ is closely related to the various structural

aspects of the set V .

Studied by Lévy, Kolmogorov, Littlewood-Offord, Erdös, Esseen,
Halasz, Frankl-Füredi, Tao-Vu, Rudelson-Vershynin, F.-Sodin,
Nguyen-Vu, . . .
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Esseen type estimates

One of the key technical tools in some of these proofs is Esseen’s
inequality, which relates the small ball probability to the behaviour
of the characteristic function of S .

Esseen’s inequality for a general random vector X says the
following

ρ
Bd

2
R (X ) ≤ Cd

(
R√
d

+
√
d

)d ∫
Bd

2

∣∣E exp (i〈X , ξ〉)
∣∣dξ.

The following Esseen type estimate was shown in [FG11,FGG14]

ρKR (X ) ≤ (κ(K )R)d
∫
Rd

∣∣E exp(i〈X , ξ〉)
∣∣e−R2|ξ|22

2 dξ.

where κ(K ) = CK

√
2
π

(
µd (K)
γd (K)

)1/d
, γd(K ) being the d-dimensional

gaussian measure of K , and µd(K ) its Lebesgue measure.
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Results: Inverse Littlewood-Offord problems for
quasi-norms

We consider the following type of problems, also known as Inverse
Littlewood-Offord Problems:

Given some bounds on ρKR (S), what structural assumptions can
one then conclude about the set {v1, . . . , vn} ⊆ Rd?

We show that if ρKR (S) does not decay too fast as n→∞,

I (geometric) then many of the vectors in the set
{v1 . . . , vn} ⊆ Rd are “well-concentrated” around a given
hyperplane.

I (arithmetic) then the set {v1, . . . , vn} ⊆ Rd can be
approximated with a set which has some arithmetic structure.
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First result: Forward Littlewood-Offord type for
quasi-norms

Theorem
Let V = {v1, . . . , vn} be a multi-set of vectors in Rd satisfying
that for any hyperplane H ⊆ Rd , one has dist2(vj ,H) > R for at
least k values of i = 1, . . . , n.

This condition on the vectors tell us the set V is “well spread”.

Then∫
Rd

∣∣E exp
(
i〈S , ξ〉

)∣∣e− |ξ|222 dξ ≤

(
40

R + 1

R

√
d

d + ck

)d

where distK (v ,S) = inf
{
‖x − s‖K

∣∣ s ∈ S
}

.

Taking contrapositives, we obtain an inverse Littlewood-Offord
theorem
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First result: Inverse Littlewood-Offord type for quasi-norms

If the concentration function ρKR (S) is asymptotically large, then
many vectors are necessarily close to a given hyperplane in Rd .

Corollary (Concentration near a hyperplane)

Assume that

ρKR (S) ≥
(
80κ(K ))d

(
d

d + ck

)d/2

.

Then there exists a hyperplane H ⊂ Rd so that

dist2(vj ,H) ≤ R.

for at least n − k values of i = 0, . . . , n.

In particular, we have distK (vj ,H) ≤ ω2(K )R, where
ωp(K ) = inf

{
t > 0

∣∣ Bd
p ⊆ tK

}
for p > 0.
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(
d

d + ck

)d/2

.

Then there exists a hyperplane H ⊂ Rd so that

dist2(vj ,H) ≤ R.

for at least n − k values of i = 0, . . . , n.

In particular, we have distK (vj ,H) ≤ ω2(K )R, where
ωp(K ) = inf

{
t > 0

∣∣ Bd
p ⊆ tK

}
for p > 0.



Second result: General arithmetic progression (GAP)

We say that a set Q ⊆ Rd is a general arithmetic progression

(GAP), if there exist L1, . . . , Lr ∈ N and vectors g1, . . . , gr ∈ Rd

such that Q can be written in the following way.

Q =

{
r∑

j=1

xjgj

∣∣∣∣∣ xj ∈ Z, |xj | ≤ Lj , j ≤ r

}
.

The number r is said to be the rank of Q, and is denoted by
rank(Q).

Finally, the vectors g1, . . . , gr ∈ Rd are said to be generators of Q.
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Second result: Approximate arithmetic progression

If ρKR (S) does not decay too fast as n→∞, then V should have
an additive structure.

Theorem
Let A, ε > 0. Assume that

ρKR (S) ≥ n−A.

Let n′ ∈ [nε, n] be a positive integer. Then there exist a GAP
Q ⊆ Rd ,
a positive integer k satisfying√

n′

640π2
√

d log (nAκ(K ))
≤ k ≤

√
n′,

and a number α
such that
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Second result: Approximate arithmetic progression (cont.)

1. Q has small rank and cardinality:

rank(Q) ≤ C

(
d +

A

ε

)
, |Q| ≤ C (A, d , ε)

(n′)
d−rank(Q)

2

ρKR (S)
.

2. Q approximates V in the K quasi-norm: At least n − n′

elements of v ∈ V satisfy

distK (v ,Q) ≤ C
ω∞(K )R

dk
.

3. Q has full dimension: There exists C ′ ≤ Cdα such that

{−1, 1}d ⊆ C ′k

R
Q.

4. The generators of Q have bounded K quasi-norm:

max
1≤j≤r

‖gj‖K ≤ C (A, d , ε)C k+1
K

(
Dk

R
max
v∈V
‖v‖K + ω∞(K )

)
.
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Concluding remarks

I Since all norms in Rd are equivalent, any euclidean result
trivially yields a result for a general norm, and also for a
quasi-norm.

But in the case of general norms and even quasi-norms, one
can obtain an estimate which better than the trivial one.

I The euclidean case of the corollary is a key ingredient in the
proof of Frankl and Füredi’s conjecture given by Tao-Vu’12.

I It is evident that it is desirable to have good estimates on
κ(K ). It could be of interest to study bodies for which κ(K )
is a constant, that is, does not depend on d .



Concluding remarks

I Since all norms in Rd are equivalent, any euclidean result
trivially yields a result for a general norm, and also for a
quasi-norm.

But in the case of general norms and even quasi-norms, one
can obtain an estimate which better than the trivial one.

I The euclidean case of the corollary is a key ingredient in the
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