Geostatistics for point processes
Predicting the intensity of ecological point process data

Edith Gabriel1,2 & Joël Chadœuf2

1Laboratoire de Mathématiques d’Avignon ; 2Unité BioSP, INRA

Journées MAS de la SMAI
Grenoble, Août 2016
Study of stochastic phenomena $Y = \{Y(x), x \in D \subset \mathbb{R}^d\}$, where Y is a random variable measured at spatial locations x_1, \ldots, x_n.

Three main components:

- **Geostatistics:**
 spatial data indexed over a continuous space

- **Lattice data:** spatial data indexed over a lattice of points

- **Spatial point patterns:**
 pertaining to the location of events of interest
Motivations

Predicting the local intensity
Defining the predictor, similarly to a kriging interpolator
Solving a Fredholm equation to find the weights
⇒ approximated solutions
Illustrative results

Discussion
Motivating example

How to know the spatial distribution of a bird species at a national scale from observations made in a limited number of windows of few hectares?

The issue

How to extensively map the intensity of a point process in a large window when observation methods are available at a much smaller scale only?

⇒ The intensity of the process must be predicted from data issued out of samples spread over the window of interest.
Let Φ a point process assumed to be

- stationary and isotropic,

\[\lambda = \frac{\mathbb{E} [\Phi(S_{obs})]}{\nu(S_{obs})} ; \quad g(r) = \frac{1}{2\pi r} \frac{\partial K^*(r)}{\partial r} \]

with $K^*(r) = \frac{1}{\lambda} \mathbb{E} [\Phi(b(0, r)) - 1|0 \in \Phi]$.

- observed in S_{obs},

- driven by a stationary random field, Z.
Our aim

Local intensity

We call *local* intensity of the point process Φ, its intensity given the random field, Z: $\lambda(x|Z)$.

Window of interest:

$$S = S_{obs} \cup S_{unobs} = (\bigcup \square) \cup (\bigcup \Box)$$

$$\Phi = \{\circ, \bullet\}; \Phi_{S_{obs}} = \{\bullet\}$$

Our aim

To predict the local intensity in an unobserved window S_{unobs}.
Example

Thomas process:

- κ: intensity of the Poisson process parents, Z,
- μ: mean number of offsprings per parent,
- σ: standard deviation of Gaussian displacement.

This process is stationary with intensity $\lambda = \kappa \mu$.

The local intensity corresponds to the intensity of the inhomogeneous Poisson process of offsprings, i.e. the intensity conditional to the parent process Z.

More generally, we consider any process driven by a stationary random field.*
Existing solutions

- From the reconstruction of the process
 - Reconstruction method based on the 1st and 2nd-order characteristics of Φ (see e.g. Tscheschel & Stoyan, 2006).
 - Get the intensity by kernel smoothing.

 A simulation-based method \Rightarrow long computation times.

- Intensity driven by a stationary random field

 Models constrained within the class of Cox processes.

- van Lieshout and Baddeley (2001).
Our alternative approach

We want to predict the local intensity $\lambda(x|Z)$

- outside the observation window,
- without precisely knowing the underlying point process \Rightarrow we only consider the 1st and 2nd-order characteristics,
- in a reasonable time.

We define an unbiased linear predictor

- which minimizes the error prediction variance (as in the geostatistical concept).
- whose weights depend on the structure of the point process.
Our predictor

Proposition

The predictor $\hat{\lambda}(x_o | Z) = \sum_{x \in \Phi \cap S_{obs}} w(x)$ is the BLUP of $\lambda(x_o | Z)$.

The weights, $w(x)$, are solution of the Fredholm equation of the 2d kind:

$$w(x) + \lambda \int_{S_{obs}} w(y) (g(x - y) - 1) \, dy - \frac{1}{\nu(S_{obs})} \left[1 + \lambda \int_{S_{obs}^2} w(y) (g(x - y) - 1) \, dx \, dy \right]$$

$$= \lambda (g(x_o - x) - 1) - \frac{\lambda}{\nu(S_{obs})} \int_{S_{obs}} (g(x_o - x) - 1) \, dx$$

and satisfy $\int_{S_{obs}} w(x) \, dx = 1$.
Solving the Fredholm equation

Any existing solution already considered in the literature can be used!

Our aim is to map the local intensity in a given window ⇒ access to fast solutions.

Several approximations can be used to solve the Fredholm equation.

The weights \(w(x) \) can be defined as

- step functions \(\rightsquigarrow \) direct solution,
- linear combination of known basis functions, e.g. splines \(\rightsquigarrow \) continuous approximation.
- ...

Here, we illustrate the ones with the less heavy calculations and implementation.
Step functions

Let consider the following partition of S_{obs}: $S_{obs} = \bigcup_{j=1}^{n} B_{j}$, with

- B: elementary square centered at 0,
- $B_{j} = B \oplus c_{j}$: elementary square centered at c_{j},
- $B_{k} \cap B_{j} = \emptyset$,
- n: number of grid cell centers lying in S_{obs}.

For $w(x) = \sum_{j=1}^{n} w_{j} \frac{1_{\{x \in B_{j}\}}}{\nu(B)}$, we get

$$\hat{\lambda}(x_{o}|Z) = \sum_{j=1}^{n} w_{j} \frac{\Phi(B_{j})}{\nu(B)},$$

with $w = (w_{1}, \ldots, w_{n}) = C^{-1}C_{o} + \frac{1-T^{T}C^{-1}C_{o}}{1+C^{-1}1}C^{-1}1$, where

- $C = \lambda \nu(B)I + \lambda^{2} \nu^{2}(B) (G - 1)$: covariance matrix with $G = \{g_{ij}\}_{i,j=1,\ldots,n}$, $g_{ij} = \frac{1}{\nu^{2}(B)} \int_{B \times B} g(c_{i} - c_{j} + u - v) \, du \, dv$, and I the $n \times n$-identity matrix.

- $C_{o} = \lambda \nu(B)I_{x_{o}} + \lambda^{2} \nu^{2}(B) (G_{o} - 1)$: covariance vector with $I_{x_{o}}$ the n-vector with zero values and one term equals to one where $x_{o} = c_{i}$, and $G_{o} = \{g_{io}\}_{i=1,\ldots,n}$.

Geostatistics for point processes E. Gabriel and J. Chadoeuf
Step functions: variance of the predictor

We consider the Neuman series to invert the covariance matrix, $C = \lambda \nu(B)\mathbb{I} + \lambda^2 \nu^2(B)(G - 1)$, when $\lambda \nu(B) \to 0$:

$$C^{-1} = \frac{1}{\lambda \nu(B)} [\mathbb{I} + \lambda \nu(B)J_\lambda] ,$$

where a generic element of the matrix J_λ is given by

$$J_\lambda[i,j] = \sum_{k=1}^{\infty} (-1)^k \lambda^{k-1} (g(x_i, x_{l_1}) - 1) \left(g(x_{l_{k-1}}, x_j) - 1\right)$$

$$\times \int_{S_{obs}^{k-1}} \prod_{m=1}^{k-2} (g(x_{l_m}, x_{l_{m+1}}) - 1) \; dx_{l_1} \cdots dx_{l_{k-1}} .$$

This leads to

$$\text{Var} \left(\hat{\lambda}(x_o | Z) \right) = \lambda^3 \nu^2(B)(G_o - 1)^T (G_o - 1) + \lambda^4 \nu^3(B)(G_o - 1)^T J_\lambda(G_o - 1)$$

$$+ \frac{1 - \left[\lambda \nu(B) \mathbf{1}^T (G_o - 1) + \lambda^2 \nu^2(B) \mathbf{1}^T J_\lambda(G_o - 1) \right]^2}{\frac{\nu(S_{obs})}{\lambda} + \nu^2(B) \mathbf{1}^T J_\lambda \mathbf{1}} .$$
Step functions: illustrative results about prediction

Simulated Thomas process
\(\kappa = 10, \mu = 50, \sigma = 0.05 \)

Theoretical local intensity

\[S = S_{obs} \cup S_{unobs} = (\bigcup \square) \cup (\bigcup \square) \]

Prediction within \(S_{unobs} \)

\{•\}: \(\Phi \cap S_{obs} \); \{○\}: \(\Phi \cap S_{unobs} \)
Let consider that the weights of $\hat{\lambda}(x_0|Z) = \sum_{x \in \Phi \cap S_{obs}} w(x)$ are defined as a degree d spline curve:

$$w(x) = \sum_{i=1}^{k} h_{i,d}(x),$$

where $h_{i,d}$ denotes the ith B-spline of order d.

A simplistic toy example in \mathbb{R}:

- $S_{obs} = [0, L) \subset [0, L'] = S$
- Linear spline defined from equally-spaced knots x_i:

$$w(x) = \begin{cases}
 a_0 + b_0 x, & x \in \Delta_0 = [x_0, x_1) = [0, \frac{L}{k}), \\
 a_1 + b_1 x, & x \in \Delta_1 = [x_1, x_2) = [\frac{L}{k}, \frac{2L}{k}), \\
 \vdots & \\
 a_{k-1} + b_{k-1} x, & x \in \Delta_{k-1} = [x_{k-1}, x_k) = [\frac{(k-1)L}{k}, L), \\
 (a_i + b_i(x - x_i)) 1_{\{x \in \Delta_i\}} &
\end{cases}$$
From the continuity property and the constraint $\int_{S_{\text{obs}}} w(x) \, dx = 1$:

$$w(x) = \frac{1}{L} - \sum_{j=0}^{k-1} b_j P_j(x),$$

with $P_j(x) = \sum_{i=0}^{k-1} \left(\frac{1/2-k+j}{k^2} - 1 \{j<i\} - (x - \frac{il}{k}) 1 \{i = j\} \right) 1 \{x \in \Delta_i\}$.

The Fredholm equation becomes

$$\sum_{j=0}^{k-1} b_j \left[P_j(x) + \lambda \int_L P_j(y)(g(x - y) - 1) \, dy - \frac{1}{L} \int_{L^2} P_j(y)(g(x - y) - 1) \, dx \, dy \right]$$

$$= \frac{\lambda}{L} \int_L (g(x - y) - 1) \, dy - \frac{1}{L^2} \int_{L^2} (g(x - y) - 1) \, dx \, dy - \lambda (g(x_0 - x) - 1)$$

$$+ \frac{1}{L} \int_L (g(x_0 - x) - 1) \, dx$$

i.e. of the form $\sum_{j=0}^{k-1} b_j A_j(x) = Q(x)$,

Then, $(b_0, \ldots, b_{k-1}) = b$ is obtained from m control points and satisfy

$$b = (X^T X)^{-1} X^T Y,$$

with $X = (A_j(x_l))_{l=1}^{m}$ and $Y = (Q(x_l))_{l=1}^{m}$.

Geostatistics for point processes E. Gabriel and J. Chadœuf
Spline basis: illustrative results

Thomas process in 1D ($\kappa = 0.5, \mu = 25, \sigma = 0.25$)

Theoretical local intensity on S_{obs}; Predicted values; Intensity of Φ

$\{\bullet\} = \Phi_{S_{obs}}$; $\{\circ\} = \Phi_{s_{unobs}}$

Geostatistics for point processes

E. Gabriel and J. Chadoeuf
In practice: g must be estimated

Simulated Thomas process
$\kappa = 10, \mu = 50, \sigma = 0.05$

Prediction within S_{unobs}
(with the theoretical pcf)

$R^2 = 0.85$

Estimated pcf

(with the estimated pcf)

$R^2 = 0.8$

$\{\bullet\}: \Phi \cap S_{obs}$; \ $\{\circ\}: \Phi \cap S_{unobs}$

R^2 in linear regression of predicted and theoretical values
(with the theoretical pcf)

- 24 x 24
- 48 x 48
- 96 x 96

Grid size
Montagu’s Harriers’ nest locations

Data collection
LTER Zone Atelier ‘Plaine & Val de Sèvre’

Estimated pcf

Prediction

\{ \bullet \} = \Phi S_{obs}; \{ \circ \} = \Phi S_{unobs}
Work in progress

- Take into account some covariates in the prediction.
- Get results with splines on the plane.
- Use finite elements method to solve the Fredholm equation.
- Determine the properties of the related predictor.
- Extend the approach to the spatio-temporal setting.

E. Gabriel et al. (2016) Adapted kriging to predict the intensity of partially observed point process data. To appear in *Spatial statistics*.

