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Spatial statistics

Study of stochastic phenomena Y = {Y(x),x € D ¢ R4},
where Y is a random variable measured at spatial locations xi, ..., X,.

Three main components:

* Geostatistics:
spatial data indexed over a continuous space

* Lattice data: spatial data indexed ‘over a lattice of points

* Spatial point patterns:
pertaining to the location of events of interest




Motivatiens

Predicting the local intensity
Defining the predictor, similarly to a kriging interpolator

Solving a Fredholm equation to find the weights
= approximated solutions

lllustrative results

Discussion



Motivating example

How to know the spatial distribution of a bird species
at a national'scale from observations made
in a limited number of windows of few hectares?

The issue

How to extensively map the intensity of a point process in a large window
when observation methods are available at a much smaller scale only?
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= The intensity of the process must be predicted from data issued out of
samples spread over the window of interest.
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Let ® a point process assumed to be

m stationary and isotropic,

E [¢( obS)]
V(Sobs) ;

with K*(r) = $E[®(b(0, r)) — 1]0 € ®].

@ik (r)

QT 2rr  Or

; g(r) =

m observed in Sgps,

m driven by a stationary random field, Z.
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Local intensity

We call local intensity of the point process @, its intensity given
the random field, Z: A(x|Z).

Window of interest:
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= {07 .}; ®s,.. = {.}

Our aim J

To predict the local intensity in an unobserved window S, 0ps.
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Thomas process:

] _ : k=154 =150 = 0.025
m k: intensity of the Poisson process parents, Z, 3 &

= u: mean number of offsprings per parent,

m o: standard deviation of Gaussian displacement.

This process is stationary with intensity A = K.

The local intensity corresponds to the intensity of the
inhomogeneous Poisson process of offsprings,
i.e. the intensity conditional to the parent process Z.

+ More generally, we consider any process
driven by a stationary random field
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Existing solutions

m From the reconstruction of the process

m Reconstruction method based on the 1% and 29-order
characteristics of ® (see e.g. Tscheschel & Stoyan, 2006).
m Get the intensity by kernel smoothing.

A simulation-based method = long computation times.

m Intensity driven by a stationary random field

m Diggle et al. (2007, 2013): Bayesian framework
m Monestiez et al. (2006, 2013): Close to classical geostatistics.

Models constrained within the class of Cox processes.

m van Lieshout and Baddeley (2001).
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Our alternative approach

We want to predict the local intensity \(x|Z)

m outside the observation window,

m without precisely knowing the underlying point process
= we only consider the 1 and 29-order characteristics,

m in a reasonable time.

We define an unbiased linear predictor

m which minimizes the error prediction variance (as in the
geostatistical concept).

m whose weights depend on the structure of the point process.
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Proposition

The predictor A(xo|Z) = X cons,, W(x) is the BLUP of A(x|2).

The weights, w(x), are solution of the Fredholm equation of the 29 kind:

w(x)+A /S W) (el =) =) dy=

:A(g(xo—x)—l)—ﬁ/S (00 — x) — 1) dx

obs

140 [ w(y) (g —y) = 1) dxdly

obs

and satisfy [o w(x)dx = 1.
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Solving the Fredholm equation

Any existing solution already considered in the literature can be used!

Our aim is to map the local intensity in a given window
= access to fast solutions.

Several approximations can be used to solve the Fredholm equation.

The weights w(x) can be defined as
m step functions ~~ direct solution,

m linear combination of known basis functions, e.g. splines

~~ continuous approximation.

Here, we illustrate the ones with the less heavy calculations and implementation.

Geostatistics for point processes E. Gabriel and J. Chadceuf



Step functions

Let consider the following partition of Syps: Sops = UJ’-’ZlB-, with

B: elementary square centered at 0,
B; = B @ ¢j: elementary square centered at ¢;,
B, N Bj = (3

n: number of grid cell centers lying in Syps.

Yes, ~ . OB
For w(x) = S Myt ve got M1Z) = 57, w2,

Tr—1
with w = (w1, ..., wy) = C1C, + B E5E €11, where

1 C = \(B)l 4+ X?v?(B)(G — 1): covariance matrix
with G = {gji}ij=1,....n &jj = 7%?) fstg(C,' — ¢+ u—v)dudy,
and I the n X n-identity matrix.
1 Co = \(B)Ix, + N\2%(B)(G, — 1): covariance vector
with I, the n-vector with zero values and one term equals to one where x, = ¢;,

and G, = {gio}izl,...,n-

Geostatistics for point processes E. Gabriel and J. Chadceuf



Step functions: variance of the predictor

We consider the Neuman series to invert the covariance matrix,
C = M(B)l 4+ A\?v?(B)(G — 1), when \y(B) — 0:

o

) [+ Av(B) ],

where a generic element of the matrix Jy is given by

Il gl =D (=1 (g(xi, %) — 1) (g(X/k_l,Xj) i’ 1)
k=1
/k ( H(g(x,m,xlmﬂ) 1) dx ... dxg, -
This leads to -
Var (X(xo|2)) = M2(B)(Go = 1) (Go — 1) + X*13(B)(Go — 1) Jx(Go — 1)

1 (BTG, = 1) + 322(B)LT (6o — 1)
gz ()L\Jbs) +12(B)17 J51 '
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Step functions: illustrative results about prediction

Simulated Thomas process Theoretical local intensity
/=10,y = 50,0 = 0.05
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Spline basis

Let.consider that the weights of A(xo|Z) = > xeons,,, W(x) are defined as
a degree d spline curve:

k
w(x) = hia(x),
i=1

where h; 4 denotes the ith B-spline of order d.

A simplistic toy example in R:

B Sops =[0,L)C[0,L]=S
m Linear spline defined from equally-spaced knots x;:

ag + box, x € Ag = [x0,x1) = [0, L),
L5

a1 + bix, x € A1 = [x1, %) = [, %)
w(x) = ;

ak_1+be_1x, X € Ap_1 = [xk_1,%) = [@, L),
= (ai + bi(x — x1)) Lixen;y
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Spline basis

From the continuity property and the constraint [¢ . w(x)dx = 1:
=i
j=0

with Pi(x) = REL(AH — 1,0 — (x — ©)1{i = }) Lxenyy

Ths Fredholm equation becomes

Zb [P0+ [BONet -0 - Va1 [ PONel 1) - Daxay

w(x) =

~l=

=5 /L(g(x —y)sldy =75 /LZ(g(X—y) —1)dxdy — Mg(xo —x) — 1)
+ %/(g(xo —x)—1)dx
i.e. of the form Zj-:ol bjAj(x) = Q(x), ;
Then, (bo, ..., bk—1) = b is obtained from m control points and satisfy
b=(XTX)"'XTy
with X = (Aj(XI))I=1,...,m and Y = (Q(XI))I=1,...,m



Spline basis: illustrative results

Thomas process in 1D (x = 0.5, u = 25,0 = 0.25)
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R2 in linear regression

Prediction within Sunobs of predicted and theoretical values
(with the theoretical pcf)

Simulated Thomas process

x = 10, p = 50, o = 0.05
(with the theoretical pcf)
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Application

Montagu’s Harriers’ nest locations

Data collection
LTER Zone Atelier ‘Plaine & Val de Sevre”

Deux-Sévres Department

Estimated pcf Prediction

{o} =05, i {e} =5

obs unobs
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Work in progress

m Take into account some covariates in the prediction.

Get results with splines on the plane.

m Use finite elements method to solve the Fredholm equation.

m Determine the properties of the related predictor.

Extend the approach to the spatio-temporal setting.
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