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The electrical grid is essentially controlled by markets (for

electricity and ancillary servic
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o Electricity markets = Day-ahead, real-time (5min)

(Many) people push for more real-time prices (e.g.: at home)
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Real-time prices simplifies control

» O

Computes a best
response to schedule
its appliances (fridges,
washing machine, etc.)

Price

Lots of papers
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Problem of real-time markets: Is it price manipulation or
an efficient market?

Source: Meyn 2012.
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Can we develop a mathematical model that captures this
behavior?

Question 1. Is there a contradiction between observed prices and
“market efficiency”? J

Question 2. Can real-time prices can be used for control? J
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We consider the simplest model that takes the dynamical
constraints into account (extension of Wang et al. 2012)

Demand . Supplier
,,,,,,,, T T

r Flexible loads| ! Storage (e.g. battery) |
Each player has internal utility/constraints. It exchanges energy.
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Examples of internal utility functions and constraints

@ Demand:

» Demand D(t) = D¢(t) + W(t), where W is a Brownian motion.
» vmin(D(t), E(t)) —c? max(D(t) — E(t),0).

satisfied demand frustrated demand

@ Supplier: generates G(t) units of energy at time t.

» Cost of generation: cG(t).
» Ramping constraints: for all s > 0: s¢” < G(t+s) — G(t) < s¢*.

@ Storage :

» No cost for using the storage system
» Capacity constraint and efficiency 7:

t
0< By +/ (nlu(s)>0 + 1u(s)<0)u(5)ds < Biax
0

@ Flexible loads: population of thermostatic loads whose consumption
can be anticipated/delayed.
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We assume perfect competition

Players are selfish and price-takers:

)

aremax  E / Wi(t) — PE() dt

E;cinternal constraints of / 0 S~ ~—
internal utility  bought/sold energy

Nicolas Gast — 10 / 23



We assume perfect competition

Players are selfish and price-takers:

arg max / Wi(t) —
0 N——"

E;€internal constraints of /

internal utility  bought/sold energy

Players share a common probabilistic forecast mogel

Players are price takers:
they cannot influence P(t).
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Definition: competitive equilibrium

Each player wants to maximize its expected payoff:

00

arg max E / Wi(t) — P(t)Ei(t) dt

E;cinternal constraints of | 0 SN~ N—
internal utility  bought/sold energy

Definition
A competitive equilibrium is a price for which players selfishly agree
on what should be bought and sold:

e For any player i, Ef is a selfish best response to P:

o Forallt: Y Ef(t)=0.

i€players
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@ Socially optimal allocation and market efficiency
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Socially optimal allocation

Demand o Supplier
,,,,,,,, T T

[;Flexible loads | 3 Storage (e.g. battery) 3

max E Z /W;(t)dt

E,' satisfies constraints i icplayers

vt Ef(t)=0
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The market is efficient (first welfare theorem)

Theorem

For any installed quantity of demand-response or
storage, any competitive equilibrium is socially optimal.

If players agree on what should be bought or sold, then it corresponds to a
socially optimal allocation.
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Proof. The first welfare theorem is a Lagrangian
decomposition

For any price process P:

social planner's problem

max E Z Wi(t)dt

E; satisfies constraints i icplayers

Vt: Y E(t)=0

selfish response to prices

> max E U(W,-(t) + P(t)Ei(t))dt

icplayers E; satisfies constraints i

If the selfish responses are such that Z E;(t) = 0, the inequality is an

1

equality.
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Proof. The first welfare theorem is a Lagrangian

decomposition

For any price process P:

max

E; satisfies constraints i icplayers

vty E(t)

social planner's problem ——

E| ) /W,-(t)dt

=0

= 2.

i€players

selfish response to prices

max E U(vv,-(t) + P(t)Ei(t))dt

E,' satisfies constraints i

If the selfish responses are such that Z Ei(t) = 0, the inequality is an

equality.

1
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© Case study: the case of storage
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The socially optimal control problem in the case of storage

D(t) 5(1)

Demand ] Supplier
L@
3 Storage 3

energy capacity Bmax,
cycle efficiency n

G,u

min E |:/((v + ) (D(t) + u(t) — G(t))™ +cG(t))e5tdt]
frustrated demand

(Ts<G(t+s)—G(t) <s¢T

such that { B(t) = B(0)+/ nu(t)lyeyso + u(t)lyy<odt ,
0
0 S B(t) S Bmax
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Structure of the socially optimal control

There exists a decreasing function ®(b) such that the optimal control is:
@ Increase the generation G(t) if G(t) — D(t) < ®(B(t))
@ Decrease the generation G(t) if G(t) — D(t) > ®(B(t))
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(a) Function b — ¢(b) for vari- (b) Sample of a trajectory of
ous values of the storage energy the optimal reserve and storage
capacity Bmax- processes. Bmax = bu.e.
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What is the price equilibrium? Is it smooth?
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What is the price equilibrium? Is it smooth?

Without storage, the price is never equal to the marginal production cost:

[0 if G(t)—D(t) >0
P(t) = { v+cbe if G(t) - D(t) <0
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What is the price equilibrium? Is it smooth?

Without storage, the price is never equal to the marginal production cost:

[0 if G(t)—D(t) >0
P(t) = { v+cbe if G(t) - D(t) <0
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Even with storage, the price is not smooth

0 if G(t) — D(t) > 0 and B(t) = Buax

v + cbe if G(t) — D(t) <0 and B(t) =0
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Even with storage, the price is not smooth

0 if G(t) — D(t) > 0 and B(t) = Bmax
- 77% V(G(t) — D(t), B(t)) if G(t) — R(t) >0 and B(t) < Bmax
t) =
aabV(G(t) — D(t),B(t)) if G(t)— D(t)<0and B(t) >0
v+ cbe if G(t) — D(t) <0 and B(t) =0
where V(s — d, b) is the value function.
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The invisible hand of the market may not be optimal
With a fixed storage capacity, a competitive equilibrium leads to an

optimal use of the resources. Yet, there is incentive to install less storage
than the social optimal
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>The forecast errors correspond to a total wind capacity of 26GW.
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@ Conclusion
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The good Observed prices are not incompatible with the model of an
efficient market.
The bad Prices are highly volatile
The ugly The market structure is not good for investment
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Do you want this at home?
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