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Motivations

General issue

Much work to establish existence of phase transitions for ”statistical
mechanics systems” and to understand the behavior of these systems
approaching the phase transition (critical phenomena: role of exactly
solvable models)
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mechanics systems” and to understand the behavior of these systems
approaching the phase transition (critical phenomena: role of exactly
solvable models)

But what is the effect of disorder on critical phenomena? Lots of
physical predictions. . .

Polymer pinning is a class of statistical mechanics models

with an exactly solvable character (without disorder)

for which much has been done when disorder is introduced

interesting from a modeling viewpoint
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“The Example”: (1 + d)–directed walk models

Symmetric Random Walk {Sn}n with increments in {−1, 0,+1} (d = 1)

Sn

n0 ω3 ω4 ω6 ω14 ω15 ω16

Defect Line
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“The Example”: (1 + d)–directed walk models

Symmetric Random Walk {Sn}n with increments in {−1, 0,+1} (d = 1)

Sn

n0 ω3 ω4 ω6 ω14 ω15 ω16

Defect Line

Model (β ≥ 0, h ∈ R):

dPN,ω

dP
(S) =

1

ZN,ω
exp

(

N
∑

n=1

(βωn + h) δn

)

with δn = 1Sn=0. The disorder ω is a IID sequence N (0, 1) of law P.
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‘Rethinking ‘The Example”

Symmetric Random Walk {Sn}n with increments in {−1, 0,+1}

Sn

n0 ω3 ω4 ω6 ω14 ω15 ω16

τ1 τ2 τ3 τ4 τ5 τ6

Defect Line

Model (β ≥ 0, h ∈ R):

dPN,ω

dP
(τ) =

1

ZN,ω
exp

(

N
∑

n=1

(βωn + h) δn

)

with δn = 1n∈τ .
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In the end: renewal based model

Basic building block: a Discrete Renewal Process
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1 τ = {τ0, τ1, τ2, . . . } discrete renewal sequence (that is, τ0 = 0 and
{τj − τj−1}j∈N is IID), of law P, s. t.

K (n) = P(τ1 = n) ∼ CK/n
1+α, (CK > 0),

and
∑

n∈N

K (n) ≤ 1.
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1 τ = {τ0, τ1, τ2, . . . } discrete renewal sequence (that is, τ0 = 0 and
{τj − τj−1}j∈N is IID), of law P, s. t.

K (n) = P(τ1 = n) ∼ CK/n
1+α, (CK > 0),

and
∑

n∈N

K (n) ≤ 1.

2 If
∑

n K (n) < 1 =⇒ renewal on N∪{∞}, with K (∞) = 1−
∑

n K (n)
(terminating renewal), otherwise the renewal is persistent.

Obs. : α = 1/2 for both d = 1 and 3, but
∑

n

K (n) < 1 if d = 3
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The Poland-Scheraga model (DNA denaturation)

Loops

AA

A

G

CTT

T

τ6 − τ5 τ9 − τ8 τ14 − τ13

The two thick lines are the DNA strands. They may be paired,
gaining thus energetic contributions that depend on whether the base
pair is A-T or G-C.
There are then sections of unpaired bases (the loops) to which an
entropy is associated: loops correspond to inter-arrival of length
n ≥ 2.
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Annealed, pure and homogeneous models

ZN,ω = E

[

exp

(

N
∑

n=1

(βωn + h) δn

)]

so

EZN,ω,β,h = E

[

exp

(

N
∑

n=1

((β2/2) + h)δn

)]

which is the partition function of a homogeneous model.
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(βωn + h) δn

)]

so

EZN,ω,β,h = E

[

exp

(

N
∑

n=1

((β2/2) + h)δn

)]

which is the partition function of a homogeneous model.

So:

The annealed (or pure) model is just a homogeneous model with
pinning potential h + β2/2;

Homogeneous pinning models are exactly solvable
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The (quenched) free energy (density)

Fundamental expression:

lim
N→∞

1

N
E logZN,ω =: f(β, h)
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The (quenched) free energy (density)

Fundamental expression:

lim
N→∞

1

N
E logZN,ω =: f(β, h)

Path properties (more natural questions for probabilists?) are subordinated
to understanding the free energy behavior.

Important facts

f(·, ·) is convex, f(β, ·) and f(·, h) are non-decreasing

Jensen’s inequality yields

E logZN,ω ≤ logEZN,ω

so
f(0, h) ≤ f(β, h) ≤ f(0, h + β2/2)

f(β, h) ≥ 0, so either = 0 or > 0
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Localization and Delocalization

Proof of f(β, h) ≥ 0:

f(β, h) = lim
N

1

N
E logE

[

exp

(

N
∑

n=1

(βωn + h)δn

)]

≥ lim inf
N

1

N
E logE

[

exp

(

N
∑

n=1

(βωn + h)δn

)

; τ1 > N

]

= lim
N

1

N
logP (τ1 > N) = 0.
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N

1

N
E logE

[

exp

(

N
∑

n=1

(βωn + h)δn

)]

≥ lim inf
N

1

N
E logE

[

exp

(

N
∑

n=1

(βωn + h)δn

)

; τ1 > N

]

= lim
N

1

N
logP (τ1 > N) = 0.

0 h

f(β, h)

Delocalized Localized

hc(β)
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Main questions

Plenty of questions, but above all:

Can one compute or estimate hc(β)?

Critical behavior? f(β, h)
hցhc (β)

∼ const.(h − hc(β))
νq

[Of course also: path properties]
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Main questions

Plenty of questions, but above all:

Can one compute or estimate hc(β)?

Critical behavior? f(β, h)
hցhc (β)

∼ const.(h − hc(β))
νq

[Of course also: path properties]

The pure (homogeneous, annealed) model is solvable

Semi-explicit formula for f(0, h) from which

hc(0) = − log
∑

n K (n)(≥ 0)

f(0, h)
hցhc (0)

∼ const.(h − hc(0))
νa , νa = max(1/α, 1)

...M. Fisher ’84. But: Erdos, Pollard, Feller, Garsia, Lamperti... (40’s...)
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General principles to deal with disorder(?)

Recall the main questions:

Compute or estimate hc(β)

Critical behavior? f(β, h)
hցhc (β)

∼ const.(h − hc(β))
νq
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General principles to deal with disorder(?)

Recall the main questions:

Compute or estimate hc(β)

Critical behavior? f(β, h)
hցhc (β)

∼ const.(h − hc(β))
νq

Harris Criterion (A. B. Harris 1974)

Knowing the critical behavior of the pure system one can decide whether
(at small disorder) the critical behavior of pure and disordered systems
coincide (the disorder is irrelevant) or differ (the disorder is relevant).
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General principles to deal with disorder(?)

Recall the main questions:

Compute or estimate hc(β)

Critical behavior? f(β, h)
hցhc (β)

∼ const.(h − hc(β))
νq

Harris Criterion (A. B. Harris 1974)

Knowing the critical behavior of the pure system one can decide whether
(at small disorder) the critical behavior of pure and disordered systems
coincide (the disorder is irrelevant) or differ (the disorder is relevant).

HC for pinning models [Forgacs et al. (1986), Derrida et al. (1992)]:

hc(β) = hac(β) and νq = νa for β ≤ β0 if α < 1/2

hc(β) > hac(β) and (probably) νq 6= νa for β > 0 and α > 1/2.

marginal case (controversial issue for physicists)
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Harris criterion for pinning models: rigorous results

Full understanding of ”non-controversial” physical predictions (with
sharper estimates), both in the irrelevant and relevant disorder regime
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Harris criterion for pinning models: rigorous results

Full understanding of ”non-controversial” physical predictions (with
sharper estimates), both in the irrelevant and relevant disorder regime

Solution of controversial marginal case (precise estimates on hc(β))

Proof of νq > νa for α > 1/2, but (main open problem) νq remains
unknown

Key specificity for pinning model

Results have gone so far because one of the two phases (the delocalized
one) is trivial from the free energy viewpoint

[Alexander, Berger, Biskup, Bolthausen, Caravenna, Derrida, G., den Hollander,
Lacoin, Opoku, Pétrélis, Poisat, Sohier, Sun, Toninelli, Torri, Zygouras:
2004-ongoing]
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Recent developments: higher dimensional

Pinning of d + 1 dimensional interfaces (free field, SOS type models)
[Coquille, Milos], [G., Lacoin]

New

M

0 N

ZN
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Recent developments: higher dimensional

Pinning of d + 1 dimensional interfaces (free field, SOS type models)
[Coquille, Milos], [G., Lacoin]

0 N

M

ZN

New spatial direction =⇒ ZN,M

Pinning of multi-dimensional renewal: (multi −→ two)

dPN,M,ω

dP
(τ) =

1

ZN,M,ω
exp

(

N
∑

n=1

M
∑

m=1

(βωn,m + h) δn,m

)

with δn,m = 1(n,m)∈τ , with τ is a two dimensional renewal
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DNA denaturation and two-dimensional renewal

Generalized Poland Scheraga model [Garel, Orland 2004]

1

1

2

2

3

3

4

4

5

5

6 7

8

9 10

12

12

14

19

Unequal strand length (12 and 19)
The configuration is determined by the six base pairs (1, 1), (2, 2),
(6, 3), (7, 4), (9, 12) and (10, 13).
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DNA denaturation and two-dimensional renewal

Same trajectory,

two-dimensional renewal representation.

A d-dimensional renewal is a d-dim. walk

with (componentwise) positive increments

like in the one dimensional case (d = 1)

0 1

1

9 11

12

18

= base pair

= free end
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Two-dimensional renewal pinning

Back to the definition of the model:

dPN,M,ω

dP
(τ) =

1

ZN,M,ω
exp

(

N
∑

n=1

M
∑

m=1

(βωn,m + h) δn,m

)

with δn,m = 1(n,m)∈τ , with τ is a two dimensional renewal
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Two-dimensional renewal pinning

Back to the definition of the model:

dPN,M,ω

dP
(τ) =

1

ZN,M,ω
exp

(

N
∑

n=1

M
∑

m=1

(βωn,m + h) δn,m

)

with δn,m = 1(n,m)∈τ , with τ is a two dimensional renewal with inter-arrival

P(τ1 = (n,m)) ∼
CK

(n +m)2+α

DNA modeling: math language, but it is the choice of
[Garel, Orland 2004], [Neher, Gerland 2006].
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Back to the definition of the model:

dPN,M,ω

dP
(τ) =

1

ZN,M,ω
exp

(

N
∑
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(βωn,m + h) δn,m

)

with δn,m = 1(n,m)∈τ , with τ is a two dimensional renewal with inter-arrival

P(τ1 = (n,m)) ∼
CK

(n +m)2+α

DNA modeling: math language, but it is the choice of
[Garel, Orland 2004], [Neher, Gerland 2006].

The free energy density is (γ > 0)

fγ(β, h) := lim
N,M→∞
M/N∼γ

1

N
E logZN,M,ω

and the localization transition is again between fγ(β, h) = 0 and
fγ(β, h) > 0.
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Two-dimensional renewal pinning

Again (a priori somewhat surprising), homogeneous (β = 0) exactly
solvable, but richer behavior!
[G., Khatib 2016], [Berger, G., Khatib]
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Two-dimensional renewal pinning

Again (a priori somewhat surprising), homogeneous (β = 0) exactly
solvable, but richer behavior!
[G., Khatib 2016], [Berger, G., Khatib]

Summary of results:

Localization transition and determination of hc(0)

Critical behavior at the localization transition: critical exponent is still
max(1, 1/α)

Other non analyticities (i.e., phase transitions) when f(0, h) > 0

Harris criterion program for IID disorder: this time disorder is
irrelevant for α < 1, i.e. hc(β) = hc(0) + β2/2 for β < β0 and
νq = νa, and relevant for α > 1, i.e. hc(β) < hc(0) + β2/2 for β > 0
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Two-dimensional renewal pinning: paths and transitions

loc

loc

loc

Delocalized
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Sum-up

I have given an overview of the ”state of the art” for pinning models
with emphasis on the role and effect of disorder
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Sum-up

I have given an overview of the ”state of the art” for pinning models
with emphasis on the role and effect of disorder

Remarkably advanced understanding of the effect of disorder in this
class of models

Still, one major open issue is unsolved: when disorder is relevant,
what is the critical behavior of the quenched system?

Another major open issue: making the Harris criterion program
rigorous for other classes of statistical mechanics systems
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