Parametric estimation in movement ecology Focus on models based on stochastic differential equations

Marie-Pierre Etienne^a, Pierre Gloaguen^a, Sylvain Le Corff^b ^a INRA/Agroparistech, ^b CNRS/Orsay Université Paris-Sud

August 30th, 2016

1 Problematic

- Context
- Potential based movement models

2 Inference

3 Simulation study

- Context
- Potential based movement models
- 2 Inference
- 3 Simulation study

Context: Movement Ecology

Main objective

• Observing movements to answer ecological/management questions.

Observing moving individuals

• Getting precise location of an individual at a precise time.

	Longitude	Latitude	Date	
X_1	-1.234	49.156	19/05/2010 04:13:12	t_1
÷	:	÷		÷
X_N	-2.314	48.236	19/05/2010 23:23:41	t _N

Context: Home range analysis

The Home Range concept (Burt 1943)

That area traversed by an individual in its normal activities of food gathering, mating, and caring for young.

From points to maps

- From GPS tracking;
- \rightarrow Mapping the use of space;
 - Quantification of individual's presence.

Mechanistic approach of home range

- Linking displacements to home range;
- Defining movement models depending on space;

- Context
- Potential based movement models

2 Inference

3 Simulation study

Movement models based on potential functions

Observed trajectory: Observations at discrete time.

Movement models based on potential functions

A trajectory: A continuous process observed at discrete times.

• Assumption:

The trajectory mainly follows the gradient of an unknown map.

• Assumption:

The trajectory mainly follows the gradient of an unknown map.

• Assumption:

The trajectory mainly follows the gradient of an unknown map.

• Assumption:

The trajectory mainly follows the gradient of an unknown map.

Goal: Estimate the map from observed trajectories.

Formal continuous time and space model

Model

 The 2D position process (X_t)_{t≥0} of an individual, starting at X₀ is the solution of the 2D-Stochastic Differential Equation (SDE)

 $d\mathcal{X}_t = \nabla P(\mathcal{X}_t, \theta) dt + \gamma dW_t$

- Deterministic part (Brillinger, 2010)
 - abla is the gradient operator;
 - $P(\cdot): \mathbb{R}^2 \mapsto \mathbb{R}$ is the potential map, independent of time;
 - Depends on unknown parameters θ .

Stochastic part

- γ is a diffusion parameter;
 - W is the 2-D standard Brownian motion.

Observations

• The continuous process $(\mathcal{X}_t)_{t\geq 0}$ is observed at discrete times $t_0, \ldots, t_n = T, \ X_{obs} = X_0, \ldots, X_T.$

MLE for discretely observed SDE

Observations

- The continuous process $(\mathcal{X}_t)_{t\geq 0}$ is observed at discrete times $t_0, \ldots, t_n, \ X_{obs} = X_0, \ldots, X_n$;
- \mathcal{X}_0 is supposed deterministic (= X_0)

By Markov property of the solution to the SDE, the loglikelihood is:

$$I(\theta|X_{obs}) = \sum_{i=0}^{n-1} \log p_{\theta}(X_{i+1}|X_i, \Delta_i)$$

where

- $\Delta_i := t_{i+1} t_i$
- $p_{\theta}(x|X_i, \Delta_i)$ is the transition density, i.e., the p.d.f. of $\mathcal{X}_{i+1}|\mathcal{X}_i = X_i$;

Problem

- Except in rare cases (e.g., Constant or linear drift), p_{θ} is unknown;
- $\bullet \Rightarrow \mathsf{Require\ approximation\ of\ the\ MLE}.$

State of the art in movement ecology

A more and more used framework

(Blackwell, 1997; Blackwell et al., 2015; Brillinger et al., 2001, 2002, 2011; Harris and Blackwell, 2013; Preisler et al., 2004, 2013)

Inference methods for the MLE used in Ecology

- Explicit, if possible (Brownian motion, Ornstein Ulhenbeck process);
- Euler approximation;
- No use of other existing methods;
- GPS sampling might not be well suited for Euler method.

Question and objectives

- How robust to low frequency sampling is the Euler method on potential based models?
- Are other existing methods more robust to low frequency sampling?

Focus on four methods

- Euler Maruyama method;
- Kessler method;
- Local Linearization (Ozaki) method;
- MCEM approach using Exact algorithm.

Problematic

2 Inference

- Pseudo likelihood approaches
- EM approach

3 Simulation study

2 Inference

- Pseudo likelihood approaches
- EM approach

3 Simulation study

The Euler-Maruyama method Target SDE

$$d\mathcal{X}_t = b_\theta(\mathcal{X}_t)dt + \gamma dW_t \tag{1}$$

Approximation

$$orall i=0,\ldots,n-1$$
 eq. (1) is replaced by

$$ilde{X}_i = X_i$$
 and $\mathsf{d} ilde{\mathcal{X}}_t = b_ heta(X_i)\mathsf{d}t + \gamma\mathsf{d}W_t$, $t_i \leq t < t_{i+1}$. (2)

The transition density of the solution of (2) is known:

$$\begin{split} \widetilde{p}_{ heta,i}\left(x,|\widetilde{X}_i,\Delta_i
ight) ext{ p.d.f. } \mathcal{N}(\mu_i,\Sigma_i) \ \mu_i &= X_i + b_{ heta}(X_i) imes \Delta_i, \ \ \Sigma_i = ext{diag}(\gamma^2 \Delta_i) \end{split}$$

Therefore the estimate is given by

$$\hat{\theta}_{Euler} = \operatorname{argmax}_{\theta} \sum_{i=0}^{n-1} \log \tilde{p}_{\theta,i}(X_{i+1}|X_i, \Delta_i)$$

The Kessler method, (Kessler, 1997)

Approximation

 $orall i = 0, \dots, n-1$ the target SDE is replaced , for $t_i \leq t < t_{i+1}$

$$\tilde{X}_{i} = X_{i}, \quad \mathrm{d}\tilde{X}_{t} = \frac{\mathbb{E}(\mathcal{X}_{i+1}|\mathcal{X}_{i} = X_{i}) - X_{i}}{\Delta_{i}}\mathrm{d}t + \mathbb{V}(\mathcal{X}_{i+1}|\mathcal{X}_{i} = X_{i})^{\frac{1}{2}}\mathrm{d}W_{t} \quad .$$
(3)

The transition density of the solution of (3) is known:

$$\begin{split} \tilde{p}_{\theta,i}\left(x, |\tilde{X}_i, \Delta_i\right) \text{ p.d.f. } \mathcal{N}(\mu_i, \Sigma_i) \\ \mu_i &= \mathbb{E}(\mathcal{X}_{i+1} | \mathcal{X}_i = X_i), \quad \Sigma_i = \mathbb{V}(\mathcal{X}_{i+1} | \mathcal{X}_i = X_i) \end{split}$$

The Kessler method, (Kessler, 1997)

Approximation

 $orall i = 0, \ldots, n-1$ the target SDE is replaced , for $t_i \leq t < t_{i+1}$

$$\tilde{X}_{i} = X_{i}, \quad \mathrm{d}\tilde{X}_{t} = \frac{\mathbb{E}(\mathcal{X}_{i+1}|\mathcal{X}_{i} = X_{i}) - X_{i}}{\Delta_{i}}\mathrm{d}t + \mathbb{V}(\mathcal{X}_{i+1}|\mathcal{X}_{i} = X_{i})^{\frac{1}{2}}\mathrm{d}W_{t} \quad .$$
(3)

The transition density of the solution of (3) is known:

$$\begin{split} \tilde{p}_{\theta,i}\left(x, |\tilde{X}_i, \Delta_i\right) \text{ p.d.f. } \mathcal{N}(\mu_i, \Sigma_i) \\ \mu_i &= \mathbb{E}(\mathcal{X}_{i+1} | \mathcal{X}_i = X_i), \quad \Sigma_i = \mathbb{V}(\mathcal{X}_{i+1} | \mathcal{X}_i = X_i) \end{split}$$

Florens-zmirou (1989) gives an expansion of these two moments,

$$\Rightarrow \hat{\theta}_{kessler} = \operatorname{argmax}_{\theta} \sum_{i=0}^{n-1} \log \tilde{p}_{\theta,i}(X_{i+1}|X_i, \Delta_i)$$

The Local linearization method, (Ozaki, 1992)

Approximation

 $orall i = 0, \ldots, n-1$ the target SDE is replaced , for $t_i \leq t < t_{i+1}$

$$\tilde{X}_i = X_i, \quad \mathrm{d}\tilde{X}_t = J_{i,\theta} \left[\tilde{X}_t - X_i + (J_{i,\theta_P})^{-1} b_\theta(X_i) \right] \mathrm{d}t + \gamma \mathrm{d}W_t \quad . \tag{4}$$

where $J_{i,\theta} = \frac{\delta b}{\delta x}(X_i)$

The transition density of the solution of (4) is known:

$$\begin{split} \tilde{p}_{\theta,i}\left(x, |\tilde{X}_i, \Delta_i\right) \text{ p.d.f. } \mathcal{N}(\mu_i, \Sigma_i) \\ \mu_i &= X_i + (\exp{(J_{i,\theta})} - I_2)(J_{i,\theta})^{-1}b_{\theta}(X_i), \\ \operatorname{vec}(\Sigma_i) &= (J_{i,\theta} \oplus J_{i,\theta})^{-1} \left(e^{(J_{i,\theta} \oplus J_{i,\theta})\Delta_i} - I_2\right)\operatorname{vec}(\gamma^2 I_2) \\ &\Rightarrow \hat{\theta}_{Ozaki} = \operatorname{argmax}_{\theta} \sum_{i=1}^{n-1} \log \tilde{p}_{\theta,i}(X_{i+1}|X_i, \Delta_i) \end{split}$$

Problematic

• Pseudo likelihood approaches

• EM approach

3 Simulation study

Alternative

- Suppose X_{mis} is known;
- The complete log likelihood $I(\theta|X_{i-1}, X_i, X_{mis})$ can be written.
- $\Rightarrow \mathbb{E}_{\mathcal{X}_{mis}}(I(\theta|X_{i-1}, X_i, X_{mis}))$ can be computed.

Complete Log Likelihood (Girsanov + Ito Lemma) $I(\theta|X_{i-1}, X_i, _{mis}) = P(X_i, \theta) - P(X_{i-1}, \theta) - \frac{1}{2} \int_{t_i-1}^{t_i} c(X_s, \theta) ds$ where $c(X_s, \theta) := \| \nabla P(X_s, \theta) \|^2 + \triangle P(X_s, \theta)$

Solution: EM algorithm

Maximising iteratively $\mathbb{E}_{\mathcal{X}_{mis}}(I(\theta|X_{i-1}, X_i, \mathcal{X}_{mis}))$; leads to the MLE.

Monte Carlo approach

- $\mathbb{E}_{\mathcal{X}_{mis}}(\cdot)$ has to be approximated;
- Need to simulate X_{mis} conditionally to (X_{i-1}, X_i);

Solution: EM algorithm

Maximising iteratively $\mathbb{E}_{\mathcal{X}_{mis}}(I(\theta|X_{i-1}, X_i, \mathcal{X}_{mis}))$; leads to the MLE.

1 Problematic

2 Inference

Parametric form for the potential map

A mixture of Gaussian forms (inspired by Preisler et al., 2013)

•
$$P(X,\theta) = \sum_{k=1}^{K} \pi_k \exp\left(-\frac{1}{2}(X-\mu_k)^T C_k(X-\mu_k)\right)$$

- *K* is the (given) number of components (attractive zones);
- μ_k is the location of the *k*-th attractive zone;
- C_k is a covariance matrix, the shape of k-th attractive zone;
- π_k is the (positive) weight of the k-th attractive zone.

Simulation

- K = 2 attractive zones (12 parameters to estimate);
- 10 independant realization of the SDE (exactly) simulated;
- 500 discrete observations per trajectory of the SDE (5000 pts total);
- Two samplings considered, $\Delta = 1$ and $\Delta = 10$;
- Experience repeated 30 times.

 $\Delta = 1$

 $\Delta = 10$

Results

 $\Delta = 1$

 $\Delta = 10$

P. Gloaguen

Estimation for movement models

08/30/2016 16 / 19

Results

 $\Delta = 1$

 $\Delta = 10$

Estimated map ($\Delta = 10$)

Estimation error ($\Delta = 10$)

Conclusions

On the example presented here:

- Euler method is the less robust method of all four;
- Pseudo likelihood methods seems robust:
 - Despite the fact that $n\Delta_n^p \not\rightarrow 0$;
 - As easy as Euler method to implement;
- Exact approach seems robust:
 - Not supposed to depend on Δ ;
 - However, computation time is much longer thant for other 3;
 - Harder to implement, more sensible to starting points.

Recommandations for movement ecology

- Ozaki or Kessler methods;
- Are more robust than Euler;
- Showed good robustness on our example;
- Easy implementation;
- Computation time do not depend on Δ .

References

- Beskos, A., Papaspiliopoulos, O., Roberts, G., and Fearnhead, P. (2006). Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes. <u>Journal of Royal Statistical Society, Series B: Statistical Methodology</u>, 68:333–382.
- Blackwell, P. (1997). Random diffusion models for animal movement. Ecological Modelling, 100(1-3):87 102.
- Blackwell, P. G., Niu, M., Lambert, M. S., and LaPoint, S. D. (2015). Exact bayesian inference for animal movement in continuous time. Methods in Ecology and Evolution, pages n/a-n/a.
- Brillinger, D., Haiganoush, K., Ager, A., Kie, J., and Stewart, B. (2002). Employing stochastic differential equations to model wildlife motion. Bulletin of the Brazilian Mathematical Society, 33:385–408.
- Brillinger, D., Preisler, H., Wisdom, M., et al. (2011). Modelling particles moving in a potential field with pairwise interactions and an application. Brazilian Journal of Probability and Statistics, 25(3):421-436.
- Brillinger, D. R., Preisler, H. K., Ager, A. A., and Kie, J. (2001). The use of potential functions in modelling animal movement. Data analysis from statistical foundations, pages 369–386.

Florens-zmirou, D. (1989). Approximate discrete-time schemes for statistics of diffusion processes. Statistics, 20(4):547-557.

- Harris, K. J. and Blackwell, P. G. (2013). Flexible continuous-time modelling for heterogeneous animal movement. <u>Ecological</u> Modelling, 255:29–37.
- Kessler, M. (1997). Estimation of an ergodic diffusion from discrete observations. <u>Scandinavian Journal of Statistics</u>, 24(2):211–229.
- Ozaki, T. (1992). A bridge between nonlinear time series models and nonlinear stochastic dynamical systems: a local linearization approach. Statistica Sinica, pages 113–135.
- Preisler, H. K., Ager, A. A., Johnson, B. K., and Kie, J. G. (2004). Modeling animal movements using stochastic differential equations. Environmetrics, 15(7):643–657.

Preisler, H. K., Ager, A. A., and Wisdom, M. J. (2013). Analyzing animal movement patterns using potential functions. Ecosphere, 4(3).