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Context: Movement Ecology

Main objective

• Observing movements to answer ecological/management questions.

Observing moving individuals

• Getting precise location of an individual at a precise time.

Longitude Latitude Date

X1 -1.234 49.156 19/05/2010 04:13:12 t1
...

...
...

...
...

XN -2.314 48.236 19/05/2010 23:23:41 tN
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Context: Home range analysis

The Home Range concept (Burt 1943)

That area traversed by an individual in its normal activities of food
gathering, mating, and caring for young.

From points to maps

From GPS tracking;

→ Mapping the use of space;

Quantification of individual’s presence.

Mechanistic approach of home range

Linking displacements to home range;

Defining movement models depending
on space;
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Movement models based on potential functions

Observed trajectory: Observations at discrete time.
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Movement models based on potential functions

A trajectory: A continuous process observed at discrete times.
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From the trajectory to the map

Assumption:
The trajectory mainly follows the gradient of an unknown map.

Goal: Estimate the map from observed trajectories.
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Formal continuous time and space model

Model

The 2D position process (Xt)t≥0 of an individual, starting at X0 is
the solution of the 2D-Stochastic Differential Equation (SDE)

dXt = ∇P(Xt , θ)dt + γdWt

Deterministic part (Brillinger, 2010)
I ∇ is the gradient operator;
I P(·) : R2 7→ R is the potential map, independent of time;
I Depends on unknown parameters θ.

Stochastic part
I γ is a diffusion parameter;
I W is the 2-D standard Brownian motion.

Observations

The continuous process (Xt)t≥0 is observed at discrete times
t0, . . . , tn = T , Xobs = X0, . . . ,XT .
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MLE for discretely observed SDE

Observations

The continuous process (Xt)t≥0 is observed at discrete times
t0, . . . , tn, Xobs = X0, . . . ,Xn;

X0 is supposed deterministic (= X0)

By Markov property of the solution to the SDE, the loglikelihood is:

l(θ|Xobs) =
n−1∑
i=0

log pθ(Xi+1|Xi ,∆i )

where

∆i := ti+1 − ti
pθ(x |Xi ,∆i ) is the transition density, i.e., the p.d.f. of Xi+1|Xi = Xi ;

Problem

Except in rare cases (e.g., Constant or linear drift), pθ is unknown;

⇒ Require approximation of the MLE.
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State of the art in movement ecology

A more and more used framework

(Blackwell, 1997; Blackwell et al., 2015; Brillinger et al., 2001, 2002, 2011;
Harris and Blackwell, 2013; Preisler et al., 2004, 2013)

Inference methods for the MLE used in Ecology

Explicit, if possible (Brownian motion, Ornstein Ulhenbeck process);

Euler approximation;

No use of other existing methods;

GPS sampling might not be well suited for Euler method.
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Question and objectives

How robust to low frequency sampling is the Euler method on
potential based models?

Are other existing methods more robust to low frequency sampling?

Focus on four methods

Euler Maruyama method;

Kessler method;

Local Linearization (Ozaki) method;

MCEM approach using Exact algorithm.
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The Euler-Maruyama method
Target SDE

dXt = bθ(Xt)dt + γdWt (1)

Approximation

∀i = 0, . . . , n − 1 eq. (1) is replaced by

X̃i = Xi and dX̃t = bθ(Xi )dt + γdWt , ti ≤ t < ti+1. (2)

The transition density of the solution of (2) is known:

p̃θ,i

(
x , |X̃i ,∆i

)
p.d.f. N (µi ,Σi )

µi = Xi + bθ(Xi )×∆i , Σi = diag(γ2∆i )

Therefore the estimate is given by

θ̂Euler = argmaxθ

n−1∑
i=0

log p̃θ,i (Xi+1|Xi ,∆i )

P. Gloaguen Estimation for movement models 08/30/2016 9 / 19



The Kessler method, (Kessler, 1997)

Approximation

∀i = 0, . . . , n − 1 the target SDE is replaced , for ti ≤ t < ti+1

X̃i = Xi , dX̃t =
E(Xi+1|Xi = Xi )− Xi

∆i
dt + V(Xi+1|Xi = Xi )

1
2 dWt .

(3)

The transition density of the solution of (3) is known:

p̃θ,i

(
x , |X̃i ,∆i

)
p.d.f. N (µi ,Σi )

µi = E(Xi+1|Xi = Xi ), Σi = V(Xi+1|Xi = Xi )

Florens-zmirou (1989) gives an expansion of these two moments,

⇒ θ̂kessler = argmaxθ

n−1∑
i=0

log p̃θ,i (Xi+1|Xi ,∆i )
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The Local linearization method, (Ozaki, 1992)

Approximation

∀i = 0, . . . , n − 1 the target SDE is replaced , for ti ≤ t < ti+1

X̃i = Xi , dX̃t = Ji ,θ

[
X̃t − Xi + (Ji ,θP )−1bθ(Xi )

]
dt + γdWt . (4)

where Ji ,θ = δb
δx (Xi )

The transition density of the solution of (4) is known:

p̃θ,i

(
x , |X̃i ,∆i

)
p.d.f. N (µi ,Σi )

µi = Xi + (exp (Ji ,θ)− I2)(Ji ,θ)−1bθ(Xi ),

vec(Σi ) = (Ji ,θ ⊕ Ji ,θ)−1
(

e(Ji,θ⊕Ji,θ)∆i − I2
)

vec(γ2I2)

⇒ θ̂Ozaki = argmaxθ

n−1∑
i=0

log p̃θ,i (Xi+1|Xi ,∆i )
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The Exact Algorithm approach, (Beskos et al., 2006)

Problem

p(Xt |Xt−1, θ) is unknown;

⇒ l(θ|Xt−1,Xt) is unknown.
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The Exact Algorithm approach, (Beskos et al., 2006)

Alternative

Suppose Xmis is known;

The complete log likelihood
l(θ|Xi−1,Xi ,Xmis) can be written.

⇒ EXmis
(l (θ|Xi−1,Xi ,Xmis)) can

be computed.

Complete Log Likelihood (Girsanov + Ito Lemma)

l(θ|Xi−1,Xi ,mis) = P(Xi , θ)− P(Xi−1, θ)− 1

2

∫ ti

ti−1
c(Xs , θ)ds

where c(Xs , θ) :=‖ ∇P(Xs , θ) ‖2 +4P(Xs , θ)
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The Exact Algorithm approach, (Beskos et al., 2006)

Solution: EM algorithm

Maximising iteratively EXmis
(l (θ|Xi−1,Xi ,Xmis)) ; leads to the MLE.

Monte Carlo approach

EXmis
(·) has to be approximated;

Need to simulate Xmis

conditionally to (Xi−1,Xi );

EXmis
(·) = EXU

(·),U ∼ U [ti−1, ti ]

Exact simulation algorithm
(Beskos et al. 2006);

E step is performed;
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conditionally to (Xi−1,Xi );

EXmis
(·) = EXU

(·),U ∼ U [ti−1, ti ]

Exact simulation algorithm
(Beskos et al. 2006);

E step is performed;

Resulting θ̂EA is an unbiased estimator
of the MLE.
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Parametric form for the potential map

A mixture of Gaussian forms (inspired by Preisler et al., 2013)

P(X , θ) =
∑K

k=1 πk exp
(
−1

2 (X − µk)TCk(X − µk)
)

K is the (given) number of components (attractive zones);

µk is the location of the k-th attractive zone;

Ck is a covariance matrix, the shape of k-th attractive zone;

πk is the (positive) weight of the k-th attractive zone.



Simulation
K = 2 attractive zones (12 parameters to estimate);
10 independant realization of the SDE (exactly) simulated;
500 discrete observations per trajectory of the SDE (5000 pts total);
Two samplings considered, ∆ = 1 and ∆ = 10;
Experience repeated 30 times.

∆ = 1 ∆ = 10
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Results

∆ = 1 ∆ = 10
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Estimated map (∆ = 10)
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Estimation error (∆ = 10)
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Conclusions
On the example presented here:

Euler method is the less robust method of all four;

Pseudo likelihood methods seems robust:
I Despite the fact that n∆p

n 9 0;
I As easy as Euler method to implement;

Exact approach seems robust:
I Not supposed to depend on ∆;
I However, computation time is much longer thant for other 3;
I Harder to implement, more sensible to starting points.

Recommandations for movement ecology

Ozaki or Kessler methods;

Are more robust than Euler;

Showed good robustness on our example;

Easy implementation;

Computation time do not depend on ∆.
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