Complexity of Stochastic Programming

Anatoli Juditsky

University Grenoble Alpes

MAS2016 August 30, 2016

Problem of interest statement

Uncertain optimization problem

Consider the following model of an uncertain optimization problem:

$$Opt = \min_{x \in X} \left\{ f(x) := E_P[F(x,\xi)] \right\}$$
(5)

where

- x is the decision variable
- ξ is the random perturbation, $\xi \sim P$, $\xi \in \Xi \subset \mathbb{R}^d$
- X is the feasible set of (S), a subset of \mathbb{R}^n
- $F: (X, \Xi) \to \mathbb{R}$: uncertain objective
- We suppose that $F(x, \cdot)$ is measurable and *P*-integrable for all $x \in X$.
- The distribution *P* may be known or unknown...

Statistical estimation and learning as stochastic optimization

- We are given an i.i.d. sample ξ₁,...,ξ_N from the unknown distribution P_{θ_{*}} known to belong to a family {P_θ, θ ∈ Θ}.
- Finding a (maximum likelihood, contrast, etc) estimation $\hat{\theta}$ of θ_* amounts to solving

$$\min_{\theta \in \Theta} \left\{ L(\theta) := E_{P_{\theta_*}}[\ell(\theta,\xi)] \right\}$$

given the sample $\xi_1, ..., \xi_N$.

- Distribution P_{θ_*} is unknown, but a sample from P_{θ_*} is available
- Observation: limits of performance of algorithms for solving (S) are closely related to performance limits of estimation procedures

Example

2-stage stochastic programs with recourse

- Newsvendor (simple inventory) problem [2] Let
 - $x \ge 0$ be the inventory level purchased newspaper stock
 - $\xi \sim P$ be the random day demand for the newspaper
 - p be the sale price, and q the purchase price

The newsvendor profit is

$$p \min\{x,\xi\} - qx,$$

so, maximizing the expected profit amounts to solving (S) with

$$F(x,\xi) = qx - p \min\{x,\xi\}.$$

• If the distribution P is known, then "explicit solution" is available to (S):

$$x_* = P^{-1}\left(\frac{p-q}{q}\right).$$

• ... in the setting with unknown P, an i.i.d. sample $\xi_1, ..., \xi_N$ from P is available.

Example: 2-stage linear stochastic program with recourse [3, 7, 21]

$$X = \{x : Ax = b, x \ge 0\}, F(x,\xi) = c^T x + Q(x,\xi),$$

where

$$Q(x,\xi) := \min_{y \ge 0} q^T y, \text{ subject to } Tx + Wy \ge h,$$

with $\xi = [q, h, T, W].$

- It is typically assumed that "recourse is complete", meaning that the auxiliary problem is feasible for all x ∈ X and all ξ ∈ Ξ.
- The case of incomplete recourse is difficult even deciding if a given 1-stage decision x results in an (a.s.) feasible second-stage problem is usually hard.

Complexity of Convex Stochastic Programming

We consider only convex programs (S), i.e. such that

- $X \subset \mathbb{R}^n$ is a convex, bounded and closed set
- f(x) is convex

We assume that

- function F(x, ξ) is given explicitly, so that we can compute efficiently its value (and perhaps the derivatives in x) at every given pair (x, ξ) ∈ X
- we can sample from P, that is, generate a sample ξ_1, ξ_2, \dots of independent realizations of ξ .

Note that our model is black-box. Thus, our conclusions will not concern the situation where the distribution P is simple and is given in advance. On the other hand, on can show [8] that it is difficult to solve to high accuracy already two-stage programs with easy-to-describe distributions.

Defining complexity

Our objective is to solve (S) to accuracy $\epsilon > 0$ with reliability $1 - \alpha$, i.e.

• being given N realizations $[\xi_i, ..., \xi_N]$, exhibit an approximate solution \hat{x}_N which satisfies

$$\operatorname{Prob}\left\{f(\widehat{x}_{N}) \leq f_{*} + \epsilon\right\} \leq 1 - \alpha$$

where f_* is the optimal value of (S).

• Let $\mathcal S$ be a class of stochastic programs and let $\mathcal M$ be a method for solving problems from $\mathcal S$.

• Let $N(\mathcal{M}, S)$ be the smallest N such that given a sample $\xi^N = [\xi_1, ..., \xi_N]$ of size N, \mathcal{M} is capable of solving $S \in S$ to accuracy ϵ with reliability $1 - \alpha$.

• We denote

$$N(\mathcal{M}, \mathcal{S}) = \sup_{S \in \mathcal{S}} N(\mathcal{M}, S)$$

the complexity of \mathcal{M} on the class \mathcal{S} .

• Finally, we define the complexity of S as complexity of the "best" method – the value

$$N(\mathcal{S}) = \inf_{\mathcal{M}} N(\mathcal{M}, \mathcal{S}).$$

Lower bound for Lipschitz-continuous $F(\cdot,\xi)$

Given L, D > 0 and $0 < \epsilon < \frac{LD}{2}$, consider the pair of stochastic programs

$$\min_{\mathbf{x}\in[-D/2,D/2]} \{f_{\kappa}(\mathbf{x}) := E_{P_{\kappa}}[\mathbf{x}\xi]$$

$$(S_{\kappa})$$

indexed with $\kappa = \pm 1$, with P_{κ} supported on $\{-L, L\}$, and such that

$$P_1\{-L\} = \frac{1}{2} - \gamma, \ P_1\{L\} = \frac{1}{2} + \gamma,$$
$$P_{-1}\{-L\} = \frac{1}{2} + \gamma, \ P_{-1}\{L\} = \frac{1}{2} - \gamma$$

with $\gamma = \frac{\epsilon}{LD}$.

We claim that any algorithm capable of solving (S_1) and (S_{-1}) to accuracy ϵ and reliability $1 - \alpha > 7/8$ requires the sample size N to satisfy

$$N \ge \frac{D^2 L^2}{\epsilon^2} \ln\left(\frac{2}{\alpha}\right)$$

• Of course,

$$f_1(x) = 2\epsilon D^{-1}x$$
, and $f_{-1}(x) = -2\epsilon D^{-1}x$,

thus

$$f_{1,*} = f_1(-D/2) = f_{-1}(D/2) = f_{-1,*} = -\epsilon,$$

while $f_1(x) \ge f_{1,*} + \epsilon = 0$ for $x \ge 0$, and $f_{-1}(x) \ge f_{-1,*} + \epsilon = 0$ for $x \le 0$.

• Let us consider the problem of testing the hypotheses

$$H_1: \kappa = 1$$
 vs $H_1: \kappa = -1$.

I claim that "by the laws of statistics", one cannot decide upon H_1 and H_2 with the risk (sum of error probabilities) less than β given the sample ξ^N , unless $N \ge \frac{D^2 L^2}{\epsilon^2} \ln\left(\frac{4}{\beta}\right)$.

• On the other hand, let \hat{x}_N be an approximate solution to (S_{κ}) using an *N*-sample ξ^N . We can associate with \hat{x}_N a test $T(\cdot)$ of H_1 vs H_{-1} as follows:

$$T(\xi^N) = -\operatorname{sign}(\widehat{x}_N).$$

Note that, by the above,

$$\alpha \geq \max_{\kappa=\pm 1} \operatorname{Prob}_{\xi_1 \sim P_{\kappa}} \left\{ \operatorname{sign}(\widehat{x}_N) + \kappa \neq 0 \right\} = \max_{\kappa=\pm 1} \operatorname{Prob}_{\xi_1 \sim P_{\kappa}} \left\{ T(\xi^N) \neq \kappa \right\} \geq \beta/2$$

We conclude that

$$\max_{\kappa=\pm 1} \operatorname{Prob} \left\{ f_{\kappa}(\widehat{x}_{N}) - f_{\kappa,*} \leq \epsilon \right\} \geq 1 - \alpha$$

implies that

$$N \ge \frac{D^2 L^2}{\epsilon^2} \ln\left(\frac{4}{\beta}\right) \ge \frac{D^2 L^2}{\epsilon^2} \ln\left(\frac{2}{\alpha}\right).$$

Of "laws of statistics..."

Recall that the risk β of any test¹ is bounded from below by the test affinity $\bar{\beta}_N$ of distributions P_{-1}^N and P_1^N of ξ^N

$$\beta \ge \bar{\beta}_N = \sum_{\mu = \{\pm L\}^N} \min \left[P_1 \{\mu\} P_{-1} \{\mu\} \right].$$

In its turn, $\bar{\beta}_N$ can be easily bounded from below using the Hellinger affinity ρ_N of these distributions. Indeed, one has [5]

$$\bar{\beta}_N \ge 4\rho_N^2 = 4\rho^{2N}$$

where ρ is the Hellinger affinity of P_{-1} and P_1 :

$$\rho = \sqrt{P_1\{-L\}P_{-1}\{-L\}} + \sqrt{P_1\{L\}P_{-1}\{L\}} = 2\sqrt{\frac{1}{4} - \gamma^2}.$$

We conclude that

$$ar{eta}_N \geq 4(1-4\gamma^2)^N = 4\left(1-rac{4\epsilon^2}{L^2D^2}
ight)^N,$$

and

$$\frac{N\epsilon^2}{\underline{L^2D^2}} \ge \ln\left(\frac{4}{\bar{\beta}_N}\right) \ge \ln\left(\frac{4}{\bar{\beta}}\right).$$

¹⁾In fact, by the Neyman-Pearson lemma, the smallest risk is attained by the likelihood ratio T_* . In the case in question this test is simply the majority vote:

$$T(\xi^n) = 2I\{2K \ge N\} - 1.$$

We have proved the following

Theorem 1 Let $S_1(D, L)$ be a class of convex stochastic programs such that

- $X \subset \mathbb{R}$ is a segment of length D > 0
- function $F(\cdot,\xi)$ is linear $F(x,\xi) = \xi x$ and $|\xi| \le L$.

Let \mathcal{M} be an algorithm capable of solving all programs from $\mathcal{S}_1(D, L)$ to accuracy ϵ with reliability $1 - \alpha$ using the sample ξ^N .

Then there is a problem $S \in S_1(D, L)$ such that M will require a sample of length

$$N \geq \frac{D^2 L^2}{\epsilon^2} \ln\left(\frac{2}{\alpha}\right)$$

to output the solution.

In other words, the complexity $N(S_1)$ of S_1 is below bounded by $\frac{D^2 L^2}{\epsilon^2} \ln \left(\frac{2}{\alpha}\right)$.

Theorem 1 allows for an immediate *n*-dimensional extension:

Theorem 2 $[15]^{(2)}$ Let S(D, L) be a class of convex stochastic programs such that

- $X \subset \mathbb{R}^n$ contains a Euclidean ball of diameter D > 0
- function $F(\cdot,\xi)$ is Lipschitz-continuous:

 $|F(x,\xi)-F(x',\xi)| \leq L \|x-x'\|_2, \ \forall \xi \in \Xi, \ \forall x,x' \in X.$

Then the complexity N(S) of the class S(D, L) of Lipschitz stochastic programs satisfies

$$N(\mathcal{S}) \geq \frac{D^2 L^2}{\epsilon^2} \ln\left(\frac{2}{\alpha}\right).$$

$$\sigma^2 = E_P[\|F'_x(x,\xi) - f'(x)]\|_2^2]$$

Note that $\sigma^2 = L^2(1 - 4\gamma^2)$ in our simple construction.

²⁾ Usually, the Lipschitz constant *L* is replaced with "standard deviation" σ of the stochastic subgradient $F'_{\chi}(x,\xi)$:

Observations

- Difficulty of solving stochastic programs depend on the amplitude of the random subgradient F'_x and the size of the problem domain
- One cannot expect solving stochastic programs to "high accuracy" 1-5% relative accuracy seems to be the attainable limit in many "practical" applications
- One cannot expect finding approximate solution x̂ which is close to the optimal set X_{*} of (S) this seems to be a desperate task already in the linear case
- "Regularity" of F does not help the lower bound holds already for linear functions
- "Higher moments" of ξ do not help the lower bound holds already for Bernoulli random variables
- ... however, strong convexity of the objective helps...

Lower bound for strongly convex Lipschitz programs

We say that $f : X \to \mathbb{R}$ is strongly convex with parameter $\mu \ge 0$ with respect to the norm $\|\cdot\|_2$ if for any $x, x' \in X$ and $\alpha \in [0, 1]$,

$$f(\alpha x + (1 - \alpha)x') \le \alpha f(x) + (1 - \alpha)f(x') - \frac{1}{2}\mu\alpha(1 - \alpha)\|x - x'\|_2^2.$$

Theorem 3 [17, 1] Let $S'(L, \mu)$ be a class of convex stochastic programs such that

- X contains an Euclidean ball or radius $r = \sqrt{\frac{\epsilon}{\mu}}$
- function $F(\cdot,\xi)$ is Lipschitz continuous for some $L < \infty$ and all $\xi \in \Xi$:

$$|F(x,\xi) - F(x',\xi)| \le L ||x - x'||_2$$

• f is strongly convex on X with parameter $\mu > 0$.

Complexity N(S') of the class $S'(L, \mu)$ admits the bound

$$N(\mathcal{S}') \geq \kappa(\alpha) \frac{L^2}{\mu\epsilon}.$$

Upper bound by Sample Average Approximation

The classical approach to solving (S) is as follows:

• given a random sample $\xi_1, ..., \xi_N$, compute the Sample Average Approximation (SAA) \hat{f}_N of f

$$\widehat{f}_N(x) = rac{1}{N} \sum_{i=1}^N F(x,\xi_i),$$

approximate (S) by the problem

$$\min_{x \in X} \widehat{f}_N(x); \tag{S_N}$$

• then use a deterministic algorithm to solve (S_N) and use optimal the solution \hat{x}_N to (S_N) as an approximate solution to (S).

Standard analysis of (S_N) yields the following

Theorem 3 [after [18]] Suppose that

- $D < \infty$ is the Euclidean diameter of X (that is $||x x'||_2 \le D, \forall x, x' \in X$)
- $F(\cdot,\xi)$ is Lipschitz-continuous for all $\xi \in \Xi$.

Then the optimal solution \widehat{x}_N to (S_N) satisfies

$$\operatorname{Prob}\left\{f(\widehat{x}_{N})-f_{*}\leq cLD\sqrt{\frac{n\ln(\frac{nN}{\alpha})}{N}}\right\}\geq 1-\alpha.$$

Theorem 3 implies an upper complexity bound for the class (S) of Lipschitz-continuus programs by SAA:

$$N(SAA, S) = c' \left(\frac{LD}{\epsilon}\right)^2 n \ln\left(\frac{LD}{\alpha\epsilon}\right)$$

which should be compared to the lower bound of Theorem 2:

$$N(S) \ge \left(\frac{DL}{\epsilon}\right)^2 \ln\left(\frac{2}{\alpha}\right).$$

The extra factor n naturally appears in the standard complexity analysis of the SAA which relies upon the relation

$$\begin{array}{ll} f(\widehat{x}_N) - f_* &= & \left[f(\widehat{x}_N) - \widehat{f}_N(\widehat{x}_N)\right] \\ &+ \left[\widehat{f}_N(\widehat{x}_N) - \widehat{f}_N(x_*)\right] & \left[\leq 0\right] \\ &+ \left[f(x_*) - \widehat{f}_N(x_*)\right] \\ &\leq & 2\sup_{x \in X} |f(x) - \widehat{f}_N(x)|. \end{array}$$

Then the uniform convergence argument (see, e.g. [16, 13]) results in the deviation bound involving the metric entropy of the ℓ_2 -ball.

Note that the extra factor is not an artefact of the proof [9]:

• one can indeed construct a family of Lipschitz-continuous functions on an ℓ_2 -ball of \mathbb{R}^n such that the set of empirical minimizers (optimal solutions to (S_N)) contains "bad points" \widehat{x}_N – such that $f(\widehat{x}_N) - f_* \ge cL$ unless $N \le n$.

Recently, a much better accuracy bounds were obtained using stability argument [6]

Theorem 4 [22, 18] Suppose that

- Euclidean diameter D of X is finite
- $F(\cdot,\xi)$ is Lipschitz-continuous and strongly convex with parameter $\mu > 0$ for all $\xi \in \Xi$

Then the optimal solution \widehat{x}_N to (S_N) satisfies

$$\mathsf{E}[f(\widehat{x}_N)] - f_* \leq c \frac{L^2}{\mu N}.$$

Furthermore, let $F(\cdot,\xi)$ be "just" convex, and let \tilde{x}_N be the optimal solution to

$$\min_{x \in X} \widehat{f}_N(x) + \lambda \|x - x_0\|_2^2, \qquad (S_Z)$$

with $\lambda \simeq \frac{LD}{\sqrt{N}}$ and $x_0 \in X$. Then the optimal solution \tilde{x}_N to (S_Z) satisfies

$$E[f(\widetilde{x}_N)] - f_* \leq c' \frac{L^2 D^2}{\sqrt{N}}.$$

In other words, when using penalized approximation (S_Z) , $N \simeq \frac{D^2 L^2}{\epsilon^2}$ is sufficient to achieve $E[f(\tilde{x}_N)] - f_* \leq \epsilon$.

Solution by Stochastic Approximation

We assume here the stochastic black-box framework [15] of solving (S):

we consider recursive algorithms M which acquire by parts the information about the problem instance (S):

- at step t = 0 the information available to M is X and the class S of problems (e.g., stochastic programs with Lipschitz constant $\leq L$)
- at step *t* = 0, 1, ...
 - given information available from steps i = 0, ..., t 1, \mathcal{M} form a search point $x_t \in X$
 - \mathcal{M} requests from the stochastic oracle some local information about (S) at x_t
 - \mathcal{M} forms somehow an approximate solution \bar{x}_t at step t.

Here we consider the case where the oracle supplies the values $z_t \in \mathbb{R}$ and $y_t \in \mathbb{R}^n$ such that

$$E_P[z_t] = f(x_t), \ E_P[y_t] \in \partial f(x_t).$$

As far as (S) is concerned, one can assume that

$$z_t = F(x_t, \xi_t), \quad y_t = F'_x(x_t, \xi_t).$$

(Standard) Stochastic Approximation (SA) algorithm [15]

• Chose somehow $x_0 \in X$, then compute search points

$$x_t = \pi_X [x_{t-1} - \gamma_t y_t], \ y_t = F'(x_{t-1}, \xi_t), \ \gamma_t > 0$$

form current approximate solution

$$ar{\mathbf{x}}_t = \left[\sum_{i=1}^t \gamma_i\right]^{-1} \sum_{i=1}^t \gamma_i \mathbf{x}_{i-1}.$$

Theorem 5 Suppose that X has a finite diameter D and $F(\cdot, \xi)$ is Lipschitz-continuous with constant L for all $\xi \in \Xi$.

Then the SA solution \bar{x}_N with constant stepsizes $\gamma_i \equiv \frac{D}{L\sqrt{N}}$ satisfies after N steps

$$\operatorname{Prob}\left\{f(\bar{x}_{N})-f_{*}\leq cLD\sqrt{\frac{\ln(\alpha^{-1})}{N}}\right\}\geq 1-\alpha.$$

I.e., complexity N(SA, S) of Stochastic Approximation on the class S(D, L) of Lipschitz stochastic programs satisfies

$$N(\mathsf{SA},\mathcal{S}) \leq c' rac{L^2 D^2}{\epsilon^2} \ln(lpha^{-1}).$$

Heuristic considerations

Suppose we are minimizing a convex $f(x) : X \to \mathbb{R}$; we are given $[f(x_i), f'(x_i)]$ at search points $x_1, ..., x_{t-1}$ and we want to decide a new search point x_t .

• The available information about f amounts to the set of affine minorants ϕ_i for f on X:

$$\phi_i(x) = f(x_i) + f'(x_i)^T (x - x_i), \ \phi_i(x) \le f(x), \ i = 0, ..., t - 1$$

Their average

$$\bar{\phi}_i(x) = \frac{1}{t} \sum_{i=0}^{t-1} [f(x_i) + f'(x_i)^T (x - x_i)]$$

is also a lower bound for f on x.

• To get a new search point one could try to minimize penalized $\bar{\phi}_i(x)$ on X:

$$x_t = \operatorname*{argmin}_{x \in X} \left\{ \sum_{i=0}^{t-1} f'(x_i)^T (x - x_i) + \frac{\beta}{2} \|x - \bar{x}\|_2^2 \right\}$$

where $\bar{x} \in X$ is referred to as prox-center and $V(x, \bar{x}) = \frac{\beta}{2} ||x - \bar{x}||_2^2$ as prox-function.

Dual Stochastic Approximation (DSA) algorithm [15, 14, 10]

• Chose somehow $x_0 \in X$, then compute search points

$$x_t = \pi_X \left[x_0 - \frac{z_t}{\beta_t} \right], \text{ where } z_t = \sum_{i=1}^t y_i \left[= \sum_{i=1}^t F'(x_{i-1}, \xi_i) \right], \beta_t \ge \beta_{t-1}$$

form current approximate solution

$$ar{x}_t = rac{1}{t}\sum_{i=0}^{t-1} x_i.$$

Theorem 6 [14] Suppose that X has a finite diameter D and $F(\cdot,\xi)$ is Lipschitz-continuous with constant L for all $\xi \in \Xi$. Then the SA solution \bar{x}_N with parameter choice

$$\beta_0 = \frac{L}{D}, \quad \beta_t = \frac{L^2}{D^2} \sum_{i=0}^{t-1} \beta_i^{-1} \left[= \beta_{t-1} + \frac{L^2}{D^2} \frac{1}{\beta_{t-1}} \right]$$

satisfies after N steps

$$\operatorname{Prob}\left\{f(\bar{x}_N) - f_* \leq cLD\sqrt{\frac{\ln(\alpha^{-1})}{N}}\right\} \geq 1 - \alpha$$

The proof is based on replacing the "Lyapunov function" $\|\cdot\|_2^2$ in the analysis of the classic SA by the "dual function"

$$W_{\beta}(z) = \min_{x \in X} z^T x + \frac{\beta}{2} ||x - x_0||_2^2, \ x_0 \in X.$$

Note that the minimizer $x_{\beta}(z)$ satisfies

$$x_{\beta}(z) = \pi_X \left[x_0 - z/\beta \right]$$

In the simple case of $X = \{x \in \mathbb{R}^n : \|x\|_2 \le R\}$, and $x_0 = 0$, one has

$$x_eta(z)=\left\{egin{array}{cc} -rac{z}{eta}, & \|z\|_2\leqeta R, \ -rac{z'z}{\|z\|_2}R, & \|z\|_2>eta R; \end{array}
ight. \hspace{0.5cm} W_eta(z)=\left\{egin{array}{cc} -rac{z'z}{2eta}, & \|z\|_2\leqeta R, \ rac{eta R'}{2}-\|z\|_2R, & \|z\|_2>eta R. \end{array}
ight.$$

Observe that

• W_{β} is concave smooth function on \mathbb{R}^n

•
$$W'_{\beta}(z) = x_{\beta}(z)$$

•
$$\|W_{\beta}'(z) - W_{\beta}'(z')\|_2 \leq \frac{1}{\beta} \|z - z'\|_2.$$

Thus

$$\begin{split} W_{\beta}(z') &\geq & W_{\beta}(z) + W_{\beta}'(z)^{T}(z'-z) - \frac{\|z'-z\|_{2}^{2}}{2\beta} \\ &= & W_{\beta}(z) + x_{\beta}(z)^{T}(z'-z) - \frac{\|z'-z\|_{2}^{2}}{2\beta} \end{split}$$

Now we can write for $\beta_t \geq \beta_{t-1}$,

$$\begin{split} \mathcal{W}_{\beta_{t}}(z_{t}) & \geq \quad \mathcal{W}_{\beta_{t-1}}(z_{t}) \geq \mathcal{W}_{\beta_{t-1}}(z_{t-1}) + x_{\beta_{t-1}}(z_{t-1})^{T}(z_{t}-z_{t-1}) - \frac{\|z_{t}-z_{t-1}\|_{2}^{2}}{2\beta_{t-1}} \\ & = \quad \mathcal{W}_{\beta_{t-1}}(z_{t-1}) + x_{t-1}^{T}y_{t} - \frac{\|y_{t}\|_{2}^{2}}{2\beta_{t-1}}, \end{split}$$

so that

$$y_t^T x_{t-1} \leq W_{\beta_t}(z_t) - W_{\beta_{t-1}}(z_{t-1}) + \frac{L^2}{2\beta_{t-1}}$$

Then

$$\sum_{i=1}^{t} y_i^T x_{i-1} \leq W_{\beta_t}(z_t) - W_{\beta_0}(z_0) + \frac{L^2}{2} \sum_{i=1}^{t} \beta_{t-1}^{-1} = W_{\beta_t}(z_t) + \frac{L^2}{2} \sum_{i=1}^{t} \beta_{t-1}^{-1}.$$

Let $x_* \in X$ be a minimizer of f on X, we have

$$\begin{split} \sum_{i=1}^{t} y_i^T (x_{i-1} - x_*) &\leq W_{\beta_t}(z_t) - \left[\sum_{i=1}^{t} y_i\right]^T x_* + \frac{L^2}{2} \sum_{i=1}^{t} \beta_{t-1}^{-1} \\ &= \left[W_{\beta_t}(z_t) - z_t^T x_*\right] + \frac{L^2}{2} \sum_{i=1}^{t} \beta_{t-1}^{-1} \\ &\leq \frac{\beta}{2} \|x_0 - x_*\|_2^2 + \frac{L^2}{2} \sum_{i=1}^{t} \beta_{t-1}^{-1} \leq \frac{\beta D^2}{2} + \frac{L^2}{2} \sum_{i=1}^{t} \beta_{t-1}^{-1} \end{split}$$

Note that, by convexity of f,

$$\underbrace{f\left(\frac{1}{t}\sum_{i=0}^{t-1}x_i\right)}_{=f(x_t)} - f_* \leq \frac{1}{t}\sum_{i=0}^{t-1}[f(x_i) - f_*] \leq \frac{1}{t}\sum_{i=0}^{t-1}f'(x_i)^T(x_i - x_*).$$

We conclude that

$$\begin{aligned} f(\bar{x}_t) - f_* &\leq \quad \frac{1}{t} \left[\sum_{i=0}^{t-1} y_{i+1}^T(x_i - x_*) - \sum_{i=0}^{t-1} \underbrace{[y_{i+1} - f'(x_i)]}_{:=\zeta_{i+1}} T(x_i - x_*) \right] \\ &\leq \quad \frac{\beta D^2}{2t} + \frac{L^2}{2t} \sum_{i=1}^t \beta_{t-1}^{-1} - \frac{1}{t} \sum_{i=0}^{t-1} \zeta_{i+1}^T(x_i - x_*). \end{aligned}$$

However, $\zeta_{i+1}^T(x_i - x_*)$ is a martingale-difference with $|\zeta_{i+1}^T(x_i - x_*)| \leq 2LD$. By the Hoeffding inequality,

$$\operatorname{Prob}\left\{\sum_{i=0}^{t-1}\zeta_{i+1}^{T}(x_{i}-x_{*})\leq-2LD\sqrt{2t\ln\left(\alpha^{-1}\right)}\right\}\leq\alpha.$$

When choosing $\beta_t = \frac{L^2}{R^2}\sum_{i=0}^{t-1}\beta_i^{-1} \asymp \frac{L}{R}\sqrt{2t},$ we arrive at

$$\operatorname{Prob}\left\{f(\bar{x}_t)-f_*\geq cLD\sqrt{\frac{\ln\left(\alpha^{-1}\right)}{t}}\right\}\leq \alpha.$$

Stochastic approximation for strongly convex objectives

• Suppose that f(x) is strongly convex with parameter $\mu > 0$. Then as soon as

$$f(x) - f_* \leq \delta$$

one has $\|x - x_*\|_2 \leq \sqrt{rac{2\delta}{\mu}}$, where $x_* \in X$ is the minimizer of $f^{(3)}$.

To minimize a strongly convex function one can proceed in stages: let D be the diameter of X.

• at stage *i* we are given an approximate solution \bar{x}^{i-1} which satisfies, "with high probability"

$$|\bar{x}^{i-1} - x_*||_2^2 \le D_{i-1}^2 \le 2^{-(i-1)}D^2.$$

We use the SA algorithm tuned for $D = D_i$ until an approximate solution \bar{x}^i satisfying

$$\|\bar{x}^{i} - x_{*}\|_{2}^{2} \leq D_{i}^{2} = \frac{D_{i-1}^{2}}{2}$$

is not available.

³⁾It suffices to note that for strongly convex f, $f(x) - f_* \ge \frac{\mu}{2} ||x - x_*||_2$.

Theorem 7 [17, 11] Suppose that X is a convex, closed and bounded set $\subset \mathbb{R}^n$, $F(\cdot, \xi)$ is Lipschitz-continuous on X with constant L for all $\xi \in \Xi$, and such that f is strongly convex with parameter $\mu > 0$.

Then complexity N(SA, S') of the stage-wise SA algorithm satisfies

$$\mathsf{N}(\mathsf{SA},\mathcal{S}') \leq c rac{L^2 \ln(lpha^{-1})}{\mu \epsilon}.$$

Furthermore, the approximate solution \bar{x}_N provided by the algorithm satisfies

$$\|\bar{x}_N - x_*\|_2 \leq \sqrt{\frac{2\epsilon}{\mu}}.$$

Taking into account problem geometry [15]

One can easily see that the statement of Theorem 2 can be rewritten as follows:

Theorem 8 Let $\|\cdot\|$ be a norm on \mathbb{R}^n , and let $S(D, L, \|\cdot\|)$ be a class of convex stochastic programs such that

- $X \subset \mathbb{R}^n$ contains a ball of norm $\|\cdot\|$ of diameter D > 0
- function $F(\cdot,\xi)$ is Lipschitz-continuous:

$$|F(x,\xi)-F(x',\xi)| \leq L ||x-x'||, \ \forall \xi \in \Xi, \ \forall x,x' \in X.$$

Then complexity N(S) of the class $S(D, L, \|\cdot\|)$ satisfies

$$N(S) \geq \frac{D^2 L^2}{\epsilon^2} \ln\left(\frac{2}{\alpha}\right).$$

Note that under the premise of Theorem 8, the stochastic subgradient $F'_x(x,\xi)$ satisfies

$$\|F'_x(x,\xi)\|_* \le L$$

where $\|\cdot\|_{*}$ is the norm conjugate to $\|\cdot\|.$

Example. Let
$$\|\cdot\| = \|\cdot\|_1$$
. Then $\|\cdot\|_* = \|\cdot\|_\infty$, and for $y \in \mathbb{R}^n$,
 $\|y\|_\infty \le \|y\|_2 \le \sqrt{n} \|y\|_\infty$

(these bound is tight).

In other words, the Lipschitz constant of F with respect to $\|\cdot\|_1$ may be \sqrt{n} -times smaller than if it were measured using $\|\cdot\|_2$.

Note, that a "natural" choice of the norm $\|\cdot\|$ to use would be the norm $\|\cdot\|_X$ induced by the set X itself – such that the set

$$\overline{X} = \frac{1}{2}(X - X)$$

is the unit ball of $\|\cdot\|$.

There are two questions to be answered:

- is the bound of Theorem 8 tight?
- when applicable, can we efficiently implement an optimization routine which attains the lower bound of Theorem 8?

The general answer is "NO", but

- the answer is "yes" in some important situations [15], e.g., when the norm || · || is the ℓ₁-norm and the feasible set is "simple";
- recent research allowed to develop new algorithms of stochastic approximation, which attain the "corrected bounds" [20].

					Таблица З
Условия на G	Рекомен- дуемын метод	Условия, при которых метод реко- мендуется	Оценка тру- досмности ме- тода, М (v)	Потенциальцая граница опижения трудоемкости в классе дет. методов, «	Потенциальная граница снижения трудоемкости в классе ранд. мотодов, «
-	мцт	$v \leqslant n^{-2}$	3n] ln (1/v)[λ_{∞} прп $v \leqslant n^{-2}$	$\lambda_{\infty} \ln M$ (ν) πρα ν $\leqslant n^{-2}$
$ \begin{aligned} & \overline{a_{p, n}(G) \leqslant \alpha,} \\ & 1$	3Cp	$\alpha v \ge n^{-1/\delta}$	$c_p \frac{\alpha^s}{\nu^s}$	$λ_p a^{2s}$ πρα αν $\ge n^{-1/s}$	$λ_p a^{2s} \ln M$ (ν) πρα αν $\ge n^{-1/s}$
			, v		$\lambda_p a^{2s}$ при $n \ge k_p (av)$
	ΜЦΤ	$\alpha v < n^{-1/s}$	3n] ln (1/v)[λ _∞ при αν < 1/ ₃₂ и ν ≤ α ⁻²	$\lambda_{\infty} \ln M$ (v) при $av < 1/_{32}$ и $v < \overline{a}^{-2}$
				$\lambda_p \ln M$ (v) при аv $< n^{-1/8}$	$λ_p \ln^2 M$ (ν) πρи αν < $n^{-1/8}$
$\alpha_{1,n}(G) \leqslant \alpha$	30, n	$\alpha v \ge n^{-1/2}$	$\frac{c_1\alpha^2\ln{(n+1)}}{v^2}$	$\lambda_1 \alpha^4$ mpn $1/4 > \alpha \nu \ge n^{-1/8}$	$ \begin{vmatrix} \lambda_1 \alpha^4 \ln M(\mathbf{v}) \\ & \text{при}^{-1/3} > \alpha \mathbf{v} \geqslant n^{-1/8} \end{vmatrix} $
				$\lambda_1 a^4 \ln (n+1)$ при ау $\ge n^{-1/2}$	$\lambda_1 a^4 \ln^2 M$ (v) при $av \ge n^{-1/2}$
					$\lambda_1 \alpha^4 \ln M(\mathbf{v})$ npu $n > k_2(\alpha \mathbf{v})$
	мцт	$av < n^{-1/2}$	3n] ln (1/v)[λ_{∞} при $v \leqslant n^{-2}$	$\lambda_{\infty} \ln M$ (v) при $v \leqslant n^{-2}$
				$λ_1 \ln M$ (ν) πρα αν $< n^{-1/2}$	$λ_1 \ln^2 M$ (ν) πρπ αν $< n^{-1/2}$
$\mathfrak{a}_{\infty, n}(G) \leqslant \mathfrak{a}$	МЦТ		3n] ln (1/ν)[λ _∞ при ν≪α ⁻² и αν<1/4	$\lambda_{\infty} \ln M (v)$ при $v \leqslant \alpha^{-2}$ п $\alpha v < \frac{1}{32}$

151

Page 151 of [15]

31/39

Theorem 9 [15] Let $S(D, L, \|\cdot\|_p)$ be a class of convex stochastic programs such that

- $X \subset \mathbb{R}^n$ contains a ball of norm $\|\cdot\|_p$ of diameter D > 0
- function $F(\cdot,\xi)$ is Lipschitz-continuous:

 $|F(x,\xi)-F(x',\xi)|\leq L||x-x'||_p, \ \forall \xi\in \Xi, \ \forall x,x'\in X.$

Then complexity N(S) of the class $S(D, L, \|\cdot\|_p)$ satisfies

$$\mathsf{N}(\mathcal{S}) \geq \mathsf{c}(lpha) \left(rac{\mathsf{L} \mathsf{D}}{\epsilon}
ight)^{\min(2,p)} \; \; \textit{for } \mathsf{p} > 1,$$

and

$$N(\mathcal{S}) \geq c(\alpha) \left(rac{LD}{\epsilon}
ight)^2 \ln[n] \ \ \textit{for } p = 1.$$

Corresponding upper bounds are provided by the Mirror Descent algorithm

- General Mirror Descent scheme: Nemirovski 1977 [15]
- Modern "Proximal form": Beck & Teboulle 2003 [4]
- Primal-dual versions: Nesterov 2002-2005 [14]

Mirror Descent: the setup

Let $\|\cdot\|$ be a norm on \mathbb{R}^n , and let $\omega: X \to \mathbb{R}$ be differentiable on X and strongly convex (with parameter 1) with respect to $\|\cdot\|$:

$$\omega(\mathbf{x}') \geq \omega(\mathbf{x}) + \nabla \omega(\mathbf{x})^{\mathsf{T}} (\mathbf{x}' - \mathbf{x}) + \frac{1}{2} \|\mathbf{x}' - \mathbf{x}\|^2, \forall \mathbf{x}, \mathbf{x}' \in \mathbf{X}.$$

For $x_0 = \operatorname{argmin}_{x \in X} \omega(x)$ we denote

$$\mathbf{V}(\mathbf{x}, \mathbf{x}_0) = \omega(\mathbf{x}) - \omega(\mathbf{x}_0) - \nabla \omega(\mathbf{x}_0)^T (\mathbf{x} - \mathbf{x}_0)$$

(Bregman divergence [5]).

By construction, $V(\cdot, x_0)$ is strongly convex, $V(x_0, x_0) = 0$, and $x_0 = \operatorname{argmin}_{x \in X} V(x, x_0)$. Note that

$$V(x, x_0) \geq \frac{1}{2} ||x - x_0||^2.$$

We refer to V as prox-function.

We denote $\Omega_X = [\max_{x,x' \in X} V(x',x)]^{1/2}$ the ω -diameter of X.

Mirror Descent algorithm [14]

The "dual version" of the Mirror Descent algorithm, associated with $\omega(\cdot)$ is as follows:

- Set the prox-center $x_0 = \operatorname{argmin}_{x \in X} \omega(x)$, put $\beta_0 > 0$ and $z_0 = 0$.
- At iteration t = 1, ..., given $x_{t-1} \in X$, compute

$$y_t = F(x_{t-1}, \xi_t), \quad z_t = \sum_{i=0}^t y_i;$$

and define the new search point x_t :

$$x_t = \operatorname*{argmin}_{x \in X} \left[z_t^T x + rac{eta_t}{2} V(x, x_0)
ight]$$

(Bregman projection or prox-transformation of z_t).

• Form the current approximate solution \bar{x}_t according to

$$\bar{x}_t = \frac{1}{t} \sum_{i=0}^{t-1} x_i.$$

Theorem 9 [14] Suppose that X has a finite ω -diameter Ω_X and $F(\cdot, \xi)$ is Lipschitz-continuous with constant L with respect to the norm $\|\cdot\|$ for all $\xi \in \Xi$. Then the MD solution \bar{x}_N with the choice of parameters

$$\beta_0 = \frac{L}{\Omega_X}, \quad \beta_t = \frac{L^2}{\Omega_X^2} \sum_{i=0}^{t-1} \beta_i^{-1}$$

satisfies after N steps

$$\operatorname{Prob}\left\{f(\bar{x}_N)-f_*\leq cL\Omega_X\sqrt{\frac{\ln(\alpha^{-1})}{N}}\right\}\geq 1-\alpha.$$

As a result, the complexity N(MD, S) of MD algorith on the class S of Lipschitz problems admits the bound

$$N(\mathsf{MD},\mathcal{S}) \leq c' rac{L^2 \Omega_X^2}{\epsilon^2} \ln(lpha^{-1}).$$

Observations

 The complexity of the class depends on the geometry of the feasible set through its ω-diameter. When Ω_X is "moderate", MD algorithm exhibits dimension-independent convergence.

Let, for instance, $\|\cdot\|$ be the ℓ_p -norm, and let

 $X = \{x \in \mathbb{R} : \|x\|_p \le R\}.$

In this case, $\Omega_X = O(1)R$ for $1 , and <math>\Omega_X = O(\ln n)R$ for p = 1.

For these values of p the complexity bound of MD fits the lower bound of Theorem 8.

On the other hand, when p > 2, there is no strongly convex with respect to $\|\cdot\|_p$ function with variation on X independent of n.

[2] In order to implement the MD algorithm, one have to be able to solve efficiently the auxiliary projection problem

$$\min_{x\in X}\left[z^{T}(x-x_{0})+\frac{\beta}{2}V(x,x_{0})\right].$$

When [1] and [2] are satisfied we refer to the situation as favorable geometry.

References I

- [1] Agarwal, A. et al (2009). Information-theoretic lower bounds on the oracle complexity of convex optimization. In Advances in Neural Information Processing Systems.
- [2] Arrow, K. J., Harris, T., & Marschak, J. (1951). Optimal inventory policy. Econometrica: Journal of the Econometric Society, 250-272.
- [3] E.M.L. Beale, On minimizing a convex function subject to linear inequalities, Journal of the Royal Statistical Society, Series B, 17 (1955), 173–184.
- [4] Beck, A., & Teboulle, M. (2003). Mirror descent and nonlinear projected subgradient methods for convex optimization. Operations Research Letters, 31(3), 167-175.
- [5] Bregman, L. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming, USSR Comp. Maths and Math. Phys., Vol. 7(3): 200–217, 1967.
- [6] Bousquet, O., & Elisseeff, A. (2002). Stability and generalization. Journal of Machine Learning Research, 2, 499–526.
- [7] G. B. Dantzig, Linear programming under uncertainty, Management Science, 1 (1955), 197–206.
- [8] Dyer, M., & Stougie, L. (2006). Computational complexity of stochastic programming problems. Mathematical Programming, 106(3), 423–432.

References II

- [9] Guigues, V., Juditsky, A., & Nemirovski, A. (2016). Non-asymptotic confidence bounds for the optimal value of a stochastic program. arXiv preprint arXiv:1601.07592.
- [10] Juditsky, A., et al (2005). Generalization error bounds for aggregation by mirror descent with averaging. In Advances in neural information processing systems, 603–610.
- [11] Juditsky, A., & Nesterov, Y. (2014). Deterministic and stochastic primal-dual subgradient algorithms for uniformly convex minimization. Stochastic Systems, 4(1), 44–80.
- [12] Kemperman, J. H. B. (1969). On the optimum rate of transmitting information, in Probability and Information Theory, Lecture Notes in Mathematics, 89, 126–169.
- [13] Koltchinskii, V. I. (1997). M-estimation, convexity and quantiles. The Annals of Statistics, 435–477.
- [14] Nesterov, Y. (2009). Primal-dual subgradient methods for convex problems. Mathematical programming, 120(1), 221–259.
- [15] Nemirovski, A. & Yudin, D. B. (1982). Problem complexity and method efficiency in optimization.
- [16] Pollard, D. (1984). Convergence of stochastic processes. Springer Ser. in Statistics.
- [17] Raginsky, M. & Rakhlin, A. (2011). Information-based complexity, feedback and dynamics in convex programming. IEEE Transactions on Information Theory, 57(10), 7036–7056.

- [18] Shalev-Shwartz, S., et al (2009). Stochastic Convex Optimization. In COLT 2009.
- [19] Shapiro, A., & Nemirovski, A. (2005). On complexity of stochastic programming problems. In Continuous optimization (pp. 111–146). Springer US.
- [20] Srebro, N., Sridharan, K., & Tewari, A. (2011). On the universality of online mirror descent. In Advances in neural information processing systems. 2645–2653.
- [21] Walkup, D. W., & Wets, R. J. B. (1967). Stochastic programs with recourse. SIAM Journal on Applied Mathematics, 15(5), 1299–1314.
- [22] Zinkevich, M. (2003) Online convex programming and generalized infinitesimal gradient ascent. In Proceedings of the 20th IMCL.