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Problem of interest statement

Uncertain optimization problem

Consider the following model of an uncertain optimization problem:

where
® x is the decision variable
e ¢ is the random perturbation, £ ~ P, £ € = C R?
e X is the feasible set of (S), a subset of R”
e F: (X,=) — R: uncertain objective
e \We suppose that F(x,-) is measurable and P-integrable for all x € X.
[}

Opt = min {f(x) := Ep[F(x,&)]}

The distribution P may be known or unknown...



Example

Statistical estimation and learning as stochastic optimization

® We are given an i.i.d. sample &1, ..., &y from the unknown distribution Py, known
to belong to a family {Py, 6 € ©}.

e Finding a (maximum likelihood, contrast, etc) estimation 0 of . amounts to
solving

g1€i8 {L(0) := Ep,_[€(6,6)]}

given the sample &1,...,&n.
® Distribution Py, is unknown, but a sample from Py, is available

e Observation: limits of performance of algorithms for solving (S) are closely related
to performance limits of estimation procedures



Example

2-stage stochastic programs with recourse

e Newsvendor (simple inventory) problem [2] Let
® x > 0 be the inventory level — purchased newspaper stock
® ¢ ~ P be the random day demand for the newspaper
® p be the sale price, and g the purchase price

The newsvendor profit is
P min{XaE} — agx,

so, maximizing the expected profit amounts to solving (S) with

F(X7 g) =aqx—-p min{X7£}'

e |[f the distribution P is known, then “explicit solution” is available to (S):

N :Pfl(pfq>.
q

® ... in the setting with unknown P, an i.i.d. sample &1, ..., &y from P is available.
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Example: 2-stage linear stochastic program with recourse [3, 7, 21]
X ={x: Ax=b, x>0}, F(x,) = c'x+Q(x.8),

where
Q(x,&) = m>ig q"y, subject to Tx+ Wy > h,
yz

with € = [q, h, T, W].

® |t is typically assumed that “recourse is complete”, meaning that the auxiliary
problem is feasible for all x € X and all £ € =.

® The case of incomplete recourse is difficult — even deciding if a given 1-stage
decision x results in an (a.s.) feasible second-stage problem is usually hard.
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Complexity of Convex Stochastic Programming

We consider only convex programs (S), i.e. such that
e X C R"is a convex, bounded and closed set
e f(x) is convex

We assume that

e function F(x,¢&) is given explicitly, so that we can compute efficiently its value
(and perhaps the derivatives in x) at every given pair (x,£) € X

® we can sample from P, that is, generate a sample &1, &, ... of independent
realizations of &.

Note that our model is black-box. Thus, our conclusions will not concern the situation
where the distribution P is simple and is given in advance. On the other hand, on can

show [8] that it is difficult to solve to high accuracy already two-stage programs with
easy-to-describe distributions.

6
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Defining complexity

Our objective is to solve (S) to accuracy € > 0 with reliability 1 — «, i.e.
e being given N realizations [&;, ..., £n], exhibit an approximate solution Xy which satisfies

Prob{f(xv) < fi+€} <1l—a

where f, is the optimal value of (S).

e Let S be a class of stochastic programs and let M be a method for solving problems
from S.
o Let N(M, S) be the smallest N such that given a sample £V = [¢1, ..., En] of size N,
M is capable of solving S € S to accuracy e with reliability 1 — a.
e We denote

N(M,S) = sup N(M, S)

ses
the complexity of M on the class S.

e Finally, we define the complexity of S as complexity of the “best” method — the value

N(S) = inf N(M, S).

n
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Lower bound for Lipschitz-continuous F(-, &)
Given [,D >0and 0 < e < % consider the pair of stochastic programs

e i {fi(x) == Ep, [x¢]

indexed with k = +1, with P, supported on {—L, L}, and such that
1 1
Pl{_L}_E_’Yv PI{L}_§+’Y7
1 1
P_i{-L}=5+7 Pa{l}=5-~

with v = ;5.

We claim that any algorithm capable of solving (S1) and (S_1) to accuracy € and reliability
1 — a > 7/8 requires the sample size N to satisfy

D22 2
N > 3 In (7) .
€ (e}

fi(x) =2eD71x, and f_1(x) = —2eD~1x,

e Of course,

thus
fie = A(=D/2) = f1(D/2) = f-1.. = —,

while fi(x) > fi,« +€=0for x >0, and f_1(x) > f_1« +e¢=0 for x <0.

(Sx)



e Let us consider the problem of testing the hypotheses
Hi: k=1vs H: k=-1.

| claim that “by the laws of statistics”, one cannot decide upon H; and H> with the risk (sum of

S . N DL 1 (4
error probabilities) less than 3 given the sample £V, unless N > p In 5)

e On the other hand, let Xy be an approximate solution to (S,;) using an N-sample £€¥. We can
associate with Xy a test T(-) of Hi vs H_; as follows:

T(SN) = —sign(Xy).
Note that, by the above,

a > max Probe, p, {sign(x) + r # 0} = max Probe,~p, {T(eV) # &} > B/2.
K= K=

We conclude that
max Prob{fe(Xn) — fox < e} >1—a
=

D22 4 D212 2
N > In{=1] > In{ —).
€2 B €2 @

implies that




Of “laws of statistics...”

Recall that the risk 3 of any test!) is bounded from below by the test affinity 3y of distributions
Pﬂl and P{V of ¢V
B=By= Y min[P{u}P_1{u}].
p={L}N

In its turn, By can be easily bounded from below using the Hellinger affinity py of these

distributions. Indeed, one has [5] _
By > 4py = 4p>"

where p is the Hellinger affinity of P_; and Py:

p=/P{—LP1{-L} + VP{L}P_1{L} =2,/ — 2.

We conclude that

= 4¢2 N
By > 4(1—4y")" :4(1— LZD2) ,

Ne2 4 4
>In{=— | >In{—=).
L2p? Bn B
Yin fact, by the Neyman-Pearson lemma, the smallest risk is attained by the likelihood ratio

T.. In the case in question this test is simply the majority vote:

T(¢") =2I{2K > N} — 1.

and
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We have proved the following

Theorem 1 Let Si1(D, L) be a class of convex stochastic programs such that
e X C R is a segment of length D > 0
® function F(-,&) is linear — F(x,&) = &x and €| < L.

Let M be an algorithm capable of solving all programs from S1(D, L) to accuracy e with
reliability 1 — o using the sample &V.

Then there is a problem S € S1(D, L) such that M will require a sample of length
22
vs O (2)
€ a

In other words, the complexity N(S1) of Si is below bounded by D;LQ In (%)

to output the solution.
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Theorem 1 allows for an immediate n-dimensional extension:

Theorem 2 [15]2) Let S(D, L) be a class of convex stochastic programs such that
® X C R" contains a Euclidean ball of diameter D > 0

® function F(-,&) is Lipschitz-continuous:
|F(X7€) - F(X,7£)| < L”X - Xl||2? Vf € Ev VX,X/ € X.

Then the complexity N(S) of the class S(D, L) of Lipschitz stochastic programs satisfies

N(S) > D:f In (3> .

«

2) Usually, the Lipschitz constant L is replaced with “standard deviation” o of the stochastic

subgradient FJ(x, &):
o? = Ep[||Fi(x,€) — £ (x)1l3]
Note that 02 = L?(1 — 4+?) in our simple construction.
12/39



Observations

e Difficulty of solving stochastic programs depend on the amplitude of the random
subgradient F, and the size of the problem domain

e One cannot expect solving stochastic programs to “high accuracy” — 1-5% relative
accuracy seems to be the attainable limit in many “practical” applications

® One cannot expect finding approximate solution X which is close to the optimal set
X, of (S) — this seems to be a desperate task already in the linear case

® “Regularity” of F does not help — the lower bound holds already for linear functions

e “Higher moments” of £ do not help — the lower bound holds already for Bernoulli
random variables

® ... however, strong convexity of the objective helps...
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Lower bound for strongly convex Lipschitz programs

We say that f : X — R is strongly convex with parameter ;s > 0 with respect to the
norm || - ||2 if for any x,x" € X and « € [0, 1],

flax+ (1 —a)x') < af(x) + (1 —a)f(x') — %ua(l —a)|x — x’||§.

Theorem 3 [17, 1] Let S8'(L, 1) be a class of convex stochastic programs such that

® X contains an Euclidean ball or radius r = \/E
® function F(-,&) is Lipschitz continuous — for some L < oo and all £ € =:
[F(x,€) = F(X',€)| < Llx = X[|2

® f js strongly convex on X with parameter y1 > 0.

Complexity N(8’) of the class S8’ (L, 1) admits the bound

N(S') > n(a)i.
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Upper bound by Sample Average Approximation

The classical approach to solving (S) is as follows:

® given a random sample &1, ..., {n, compute the Sample Average Approximation
(SAA) fy of f

N
- 1
fN(X) = N ; F(X7£i)7
approximate (S) by the problem

min ?_/\V(X); (Sw)

xeX

® then use a deterministic algorithm to solve (Sy) and use optimal the solution Xy to
(Sw) as an approximate solution to (S).

15 /39



Standard analysis of (Sy) yields the following

Theorem 3 [after [18]] Suppose that
® D < oo is the Euclidean diameter of X (that is ||x — x'||2 < D, Vx,x" € X)
e F(-,&) is Lipschitz-continuous for all £ € =.

Then the optimal solution X to (Sy) satisfies

nin(2Y)
N

Prob ¢ f(xn) — £ < cLD >1-a.

Theorem 3 implies an upper complexity bound for the class (S) of Lipschitz-continuus

programs by SAA:
2
N(SAA,S) = ¢ (£> nin <£>
€

ae

which should be compared to the lower bound of Theorem 2:
2
N(S) > (&> In <3> .
€ «@

16
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The extra factor n naturally appears in the standard complexity analysis of the SAA which relies

upon the relation
f(Xn) — fi

<

[f(xn) — ?N(f/v)]
Hifn () — fv(x)] [ 0]
HF(x) — fv(x)]

2supxex |f(x) = fv(x)I-

Then the uniform convergence argument (see, e.g. [16, 13]) results in the deviation bound

involving the metric entropy of the £3-ball.

Note that the extra factor is not an artefact of the proof [9]:

e one can indeed construct a family of Lipschitz-continuous functions on an {-ball of R"
such that the set of empirical minimizers (optimal solutions to (Sy)) contains “bad
points” Xy — such that f(xn) — f. > cL unless N < n.
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Recently, a much better accuracy bounds were obtained using stability argument [6]
Theorem 4 [22, 18] Suppose that
® Fuclidean diameter D of X is finite

e F(-,&) is Lipschitz-continuous and strongly convex with parameter j > 0 for all
ez
Then the optimal solution Xy to (Sn) satisfies
12
E[f(xn)] — £ < CM—N.

Furthermore, let F(-,£) be “just” convex, and let Xy be the optimal solution to
min fu(x) + Allx = o3, (S2)
with \ < % and xp € X.
Then the optimal solution Xy to (Sz) satisfies
,12D?
VN
D?1?

In other words, when using penalized approximation (Sz), N =< =4 is sufficient to
achieve E[f (xn)] — fx <e.

E[f(w)] —f. < ¢
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Solution by Stochastic Approximation

We assume here the stochastic black-box framework [15] of solving (S):

we consider recursive algorithms M which acquire by parts the information about the
problem instance (S):

e at step t = 0 the information available to M is X and the class S of problems (e.g.,
stochastic programs with Lipschitz constant < L)
eatstept=20,1,...

® given information available from steps i =0,...,t — 1, M form a search point
Xt € X

® M requests from the stochastic oracle some local information about (S) at x;
® M forms somehow an approximate solution X; at step t.

Here we consider the case where the oracle supplies the values z: € R and y; € R” such
that

Epl[z:] = f(x:), Ep[y:] € Of(xt).

As far as (S) is concerned, one can assume that

z = F(xt,&), yr = Fxl(Xtaft)~
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(Standard) Stochastic Approximation (SA) algorithm [15]

® Chose somehow xp € X, then compute search points

Xt = TX [thl - %Yt], Yr = F/(thl,ft), 7 >0

® form current approximate solution

t -1
Xt = [Z 'Yi:| Z YiXi—1-
i=1 i=1

Theorem 5 Suppose that X has a finite diameter D and F(-,&) is Lipschitz-continuous
with constant L for all £ € =.

Then the SA solution Xy with constant stepsizes i =

= ﬁ satisfies after N steps
1
Prob{f()‘qv) —f. <eclD In(ozN)} >1—a.

l.e., complexity N(SA,S) of Stochastic Approximation on the class S(D, L) of Lipschitz
stochastic programs satisfies

212
N(SA,s) < ¢ P

€2

In(a™1).
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Heuristic considerations

Suppose we are minimizing a convex f(x) : X — R; we are given [f(x;), f'(x;)] at search
points xi, ..., xt—1 and we want to decide a new search point x;.

e The available information about f amounts to the set of affine minorants ¢; for f on

X:
i(x) = f(xi) + f/(x,-)T(x —xi), ¢i(x) <f(x), i=0,..,t—1.

Their average
310 = 3 S_IF0) + /() (x = )]

is also a lower bound for f on x.
e To get a new search point one could try to minimize penalized ¢;(x) on X:

t—1
Xr = argmin {Z f'(x) " (x — x;) + §||X — )'<|§}

xeX i—0

where X € X is referred to as prox-center and V/(x,X) = g”X — X||3 as prox-function.
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Dual Stochastic Approximation (DSA) algorithm [15, 14, 10]

e Chose somehow xp € X, then compute search points

t t
Xt = X |:Xo — %:| y where Zy = Zyi |: E F/(Xil,fi):| 5 ﬂt 2 ﬁtfl
t i=1 i=1

e form current approximate solution

1 t—1
)_(t = ? ZOX,'.
=l

Theorem 6 [14] Suppose that X has a finite diameter D and F(-,&) is
Lipschitz-continuous with constant L for all £ € =. Then the SA solution xy with
parameter choice

L 2 21
/30*5, 5t*§§51 |:75t71+ﬁm:|

satisfies after N steps

—1
Prob {f(;w) —f, <clD '"(7‘\/ )} >1-a.
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The proof is based on replacing the “Lyapunov function” || - H% in the analysis of the classic SA

by the “dual function”
Wp(z) = minz"x + é”x —xoll3, x0 € X.
xeX 2

Note that the minimizer xg(z) satisfies

x3(z) = mx [x0 — z/B]

In the simple case of X = {x € R": ||x|]2 < R}, and xg = 0, one has

{ -, lzll2 < BR,

.
Ws(z) = { 237

R R; s R?
- llzlle > BR: B —Jzl2R

z z

xg(z) =

__z_
lzll2

Observe that
® Wjg is concave smooth function on R”
o Wi(z) = xs(2)
o IWh(z) — W)z < Sllz — 2/l
Thus

WB(Z/)

(Y

Ws(2) + Wh(@) (2 = 2) —

|

23

[E

Ws(2) + x5(2) " (2" — 2) —

|2/ — z

zll2 < BR,
. lzll2 > BR.

I3
2

2

23 /39



Now we can write for B¢ > Bt—_1,

2
Zt — Zy_1
Wa(z) > Wa,y(20) > Wa,_, (20 1)+ xp_y (e 1) (2 — zep) — 12— 2l

2Bt—1
llyell3
— w _ T _ 2
Be_1(Ze-1) + X1yt 260y’
so that
T L?
¥e Xe—1 < We,(2¢) — W, (zt-1) + .
2Bt—1
Then

t
nyTX"*l < W (z) — Wey(20) + Zﬂt 1= Wg, (2 +*Zﬁt 1-
i=1

Let x. € X be a minimizer of f on X, we have

t 2 t
L -
S %) S Wila {zy,] .t 235,
i=1 i=1
T L2
= {Wﬁt(zt) —Zz X*] Y Zﬁt—l
i=1
B , 2,1 _ BD?
< EHXO—x*nﬁ;Zm_7+f26t1
i=1
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Note that, by convexity of f,

1 t—1 1 t—1 1 t—1
/ T
f <t gx,) —f <2 ;[f(x,-) —fl< go F1x) T (xi — ).

=f(xt)

We conclude that

t—1
f(x)—f < Zy,+1(Xl —Xx) — Z [yiq1 — f (>l T(XI — Xx)

=Cigl

2t Zﬁt 17 Z<l+1

However, (I.TH(X, Xx) is a martingale-difference with K,H(x,- — x«)| < 2LD. By the Hoeffding

inequality,
t—1
Prob {Z ¢la(xi — x«) < —2LDy/2tIn (al)} <o

i=0

. 2 1 .
When choosing 8: = % Z;:()l B; < % 2t, we arrive at

-1
Prob{ f(X¢) — fx > CLD\/W <a.
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Stochastic approximation for strongly convex objectives

e Suppose that f(x) is strongly convex with parameter > 0. Then as soon as

f(x) — f <6,
one has ||x — x«|]2 < 1/%, where x, € X is the minimizer of £.3)

To minimize a strongly convex function one can proceed in stages: let D be the
diameter of X.

e at stage / we are given an approximate solution X'~! which satisfies, "“with high
probability”

=i—1

|87 — x5 < DA, <2707 p2,

We use the SA algorithm tuned for D = D; until an approximate solution X'
satisfying
. D?
19" = x|z < DF = ==

is not available.

3t suffices to note that for strongly convex f, f(x) — f. > Sllx = X |l2.
26/30



Theorem 7 [17, 11] Suppose that X is a convex, closed and bounded set C R", F(-,£)
is Lipschitz-continuous on X with constant L for all £ € =, and such that f is strongly
convex with parameter p > 0.

Then complexity N(SA,S’) of the stage-wise SA algorithm satisfies

LIn(a™) —1)
e

N(SA,8") < ¢

Furthermore, the approximate solution Xy provided by the algorithm satisfies

2¢e

IXv — xell2 < 4/ —.
m
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Taking into account problem geometry [15]

One can easily see that the statement of Theorem 2 can be rewritten as follows:

Theorem 8 Let || - || be a norm on R", and let S(D, L,|| - ||) be a class of convex
Stochastic programs such that

e X C R” contains a ball of norm || - || of diameter D > 0

e function F(-,§) is Lipschitz-continuous:

|F(x,&) = F(x',&)| < L|x — X||, V€€ Z, Vx,x € X.
Then complexity N(S) of the class S(D, L, || - ||) satisfies

N(S) > D;LZ In (E) .

«
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Note that under the premise of Theorem 8, the stochastic subgradient Fy(x,¢) satisfies
IF(x, €« < L

where || - ||« is the norm conjugate to || - ||.

Example. Let |- || =1 -|lz- Then || - ||« = - ||oo, and for y € R",

[¥lloe < llyll2 < V/nllyllo

(these bound is tight).

In other words, the Lipschitz constant of F with respect to || - |1 may be y/n-times
smaller than if it were measured using || - ||2.
Note, that a “natural” choice of the norm || - || to use would be the norm || - ||x induced

by the set X itself — such that the set
X =3(X-X)

is the unit ball of || - ||.
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There are two questions to be answered:
® is the bound of Theorem 8 tight?

e when applicable, can we efficiently implement an optimization routine which
attains the lower bound of Theorem 87

The general answer is “NO”, but

® the answer is “yes’ in some important situations [15], e.g., when the norm || - || is
the £1-norm and the feasible set is “simple”;

® recent research allowed to develop new algorithms of stochastic approximation,
which attain the “corrected bounds” [20].
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Theorem 9 [15] Let S(D, L, || - ||) be a class of convex stochastic programs such that
e X C R” contains a ball of norm || - ||, of diameter D > 0

e function F(-,§) is Lipschitz-continuous:
|F(x,8) = F(x', ) < L|x — X[, V€ €Z, vx,x € X.

Then complexity N(S) of the class S(D, L, || - ||p) satisfies
LD min(2,p)
N(S) > c(a) <—) forp>1,
€

and )
N(S) > c(a) (%) In[n] for p=1.
Corresponding upper bounds are provided by the Mirror Descent algorithm
® General Mirror Descent scheme: Nemirovski 1977 [15]
e Modern “Proximal form”: Beck & Teboulle 2003 [4]
® Primal-dual versions: Nesterov 2002-2005 [14]
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Mirror Descent: the setup

Let || - || be a norm on R”, and let w : X — R be differentiable on X and strongly convex

(with parameter 1) with respect to || - ||:

w(x') > w(x) + Vw(x)"(x' = x) + 3|x" — x|]*,vx,x" € X.

For xo = argmin, .y w(x) we denote
V(x,x0) = w(x) — w(xo) — Vw(xo) " (x — x0)
(Bregman divergence [5]).

By construction, V(+, xo) is strongly convex, V(xo,x0) = 0, and
xo = argmin, ., V(x,x0). Note that

V(x, %) > 3 x — x>,

We refer to V' as prox-function.
We denote Qx = [max, v ex V(X', x)]"/? the w-diameter of X.
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Mirror Descent algorithm [14]

The “dual version” of the Mirror Descent algorithm, associated with w(-) is as follows:
® Set the prox-center xp = argmin .y w(x), put o > 0 and z = 0.
® At iteration t =1,..., given x,—1 € X, compute

t

ye = F(xe-1,&), z= Zyii

i=0
and define the new search point x::
_ . T Bt
x¢ = argmin |z; x + = V/(x, x0)
xeX 2

(Bregman projection or prox-transformation of z).

® Form the current approximate solution X; according to

1 t—1
X = ?;Xj'
i=
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Theorem 9 [14] Suppose that X has a finite w-diameter Qx and F(-,&) is
Lipschitz-continuous with constant L with respect to the norm || - || for all € € =. Then
the MD solution Xy with the choice of parameters

2
fo= s B or DB

satisfies after N steps

/ 1
Prob{f()’q\,) fo < clQx In(aN)} >1—a.

As a result, the complexity N(MD, S) of MD algorith on the class S of Lipschitz
problems admits the bound

202
N(MD, S) < c’L—?X In(a™?).
€
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Observations

[1] The complexity of the class depends on the geometry of the feasible set through
its w-diameter. When Qx is “moderate”, MD algorithm exhibits
dimension-independent convergence.

Let, for instance, || - || be the £,-norm, and let
X={xeR: x|l <R}
In this case, 2x = O(1)R for 1 < p < 2, and Qx = O(Inn)R for p = 1.

For these values of p the complexity bound of MD fits the lower bound of
Theorem 8.

On the other hand, when p > 2, there is no strongly convex with respect to || - ||,
function with variation on X independent of n.

[2] In order to implement the MD algorithm, one have to be able to solve efficiently
the auxiliary projection problem

min [z (x — x0) + gV(X7xo) .

xeX

When [1] and [2] are satisfied we refer to the situation as favorable geometry.
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