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Problem of interest statement
Uncertain optimization problem

Consider the following model of an uncertain optimization problem:

Opt = min
x∈X

{
f (x) := EP [F (x , ξ)]

}
(S)

where

• x is the decision variable

• ξ is the random perturbation, ξ ∼ P, ξ ∈ Ξ ⊂ Rd

• X is the feasible set of (S), a subset of Rn

• F : (X ,Ξ)→ R: uncertain objective

• We suppose that F (x , ·) is measurable and P-integrable for all x ∈ X .

• The distribution P may be known or unknown...
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Example
Statistical estimation and learning as stochastic optimization

• We are given an i.i.d. sample ξ1, ..., ξN from the unknown distribution Pθ∗ known
to belong to a family {Pθ, θ ∈ Θ}.

• Finding a (maximum likelihood, contrast, etc) estimation θ̂ of θ∗ amounts to
solving

min
θ∈Θ

{
L(θ) := EPθ∗

[`(θ, ξ)]
}

given the sample ξ1, ..., ξN .

• Distribution Pθ∗ is unknown, but a sample from Pθ∗ is available

• Observation: limits of performance of algorithms for solving (S) are closely related
to performance limits of estimation procedures
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Example
2-stage stochastic programs with recourse

• Newsvendor (simple inventory) problem [2] Let

• x ≥ 0 be the inventory level – purchased newspaper stock

• ξ ∼ P be the random day demand for the newspaper

• p be the sale price, and q the purchase price

The newsvendor profit is
p min{x , ξ} − qx ,

so, maximizing the expected profit amounts to solving (S) with

F (x , ξ) = qx − p min{x , ξ}.

• If the distribution P is known, then “explicit solution” is available to (S):

x∗ = P−1

(
p − q

q

)
.

• ... in the setting with unknown P, an i.i.d. sample ξ1, ..., ξN from P is available.
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Example: 2-stage linear stochastic program with recourse [3, 7, 21]

X = {x : Ax = b, x ≥ 0}, F (x , ξ) = cT x + Q(x , ξ),

where
Q(x , ξ) := min

y≥0
qT y , subject to Tx + Wy ≥ h,

with ξ = [q, h,T ,W ].

• It is typically assumed that “recourse is complete”, meaning that the auxiliary
problem is feasible for all x ∈ X and all ξ ∈ Ξ.

• The case of incomplete recourse is difficult – even deciding if a given 1-stage
decision x results in an (a.s.) feasible second-stage problem is usually hard.
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Complexity of Convex Stochastic Programming

We consider only convex programs (S), i.e. such that

• X ⊂ Rn is a convex, bounded and closed set

• f (x) is convex

We assume that

• function F (x , ξ) is given explicitly, so that we can compute efficiently its value
(and perhaps the derivatives in x) at every given pair (x , ξ) ∈ X

• we can sample from P, that is, generate a sample ξ1, ξ2, ... of independent
realizations of ξ.

Note that our model is black-box. Thus, our conclusions will not concern the situation
where the distribution P is simple and is given in advance. On the other hand, on can
show [8] that it is difficult to solve to high accuracy already two-stage programs with
easy-to-describe distributions.
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Defining complexity

Our objective is to solve (S) to accuracy ε > 0 with reliability 1− α, i.e.
• being given N realizations [ξi , ..., ξN ], exhibit an approximate solution x̂N which satisfies

Prob {f (x̂N) ≤ f∗ + ε} ≤ 1− α

where f∗ is the optimal value of (S).

• Let S be a class of stochastic programs and let M be a method for solving problems
from S.
• Let N(M, S) be the smallest N such that given a sample ξN = [ξ1, ..., ξN ] of size N,
M is capable of solving S ∈ S to accuracy ε with reliability 1− α.
• We denote

N(M,S) = sup
S∈S

N(M, S)

the complexity of M on the class S.

• Finally, we define the complexity of S as complexity of the “best” method – the value

N(S) = inf
M

N(M,S).
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Lower bound for Lipschitz-continuous F (·, ξ)

Given L,D > 0 and 0 < ε < LD
2

, consider the pair of stochastic programs

min
x∈[−D/2,D/2]

{
fκ(x) := EPκ [xξ] (Sκ)

indexed with κ = ±1, with Pκ supported on {−L, L}, and such that

P1{−L} = 1
2 − γ, P1{L} = 1

2 + γ,

P−1{−L} = 1
2 + γ, P−1{L} = 1

2 − γ

with γ = ε
LD

.

We claim that any algorithm capable of solving (S1) and (S−1) to accuracy ε and reliability
1− α > 7/8 requires the sample size N to satisfy

N ≥
D2L2

ε2
ln

(
2

α

)
.

• Of course,
f1(x) = 2εD−1x , and f−1(x) = −2εD−1x ,

thus
f1,∗ = f1(−D/2) = f−1(D/2) = f−1,∗ = −ε,

while f1(x) ≥ f1,∗ + ε = 0 for x ≥ 0, and f−1(x) ≥ f−1,∗ + ε = 0 for x ≤ 0.
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• Let us consider the problem of testing the hypotheses

H1 : κ = 1 vs H1 : κ = −1.

I claim that “by the laws of statistics”, one cannot decide upon H1 and H2 with the risk (sum of

error probabilities) less than β given the sample ξN , unless N ≥ D2L2

ε2 ln
(

4
β

)
.

• On the other hand, let x̂N be an approximate solution to (Sκ) using an N-sample ξN . We can
associate with x̂N a test T (·) of H1 vs H−1 as follows:

T (ξN) = −sign(x̂N).

Note that, by the above,

α ≥ max
κ=±1

Probξ1∼Pκ

{
sign(x̂N) + κ 6= 0

}
= max
κ=±1

Probξ1∼Pκ

{
T (ξN) 6= κ

}
≥ β/2.

We conclude that
max
κ=±1

Prob {fκ(x̂N)− fκ,∗ ≤ ε} ≥ 1− α

implies that

N ≥
D2L2

ε2
ln

(
4

β

)
≥

D2L2

ε2
ln

(
2

α

)
.
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Of “laws of statistics...”

Recall that the risk β of any test1) is bounded from below by the test affinity β̄N of distributions
PN
−1 and PN

1 of ξN

β ≥ β̄N =
∑

µ={±L}N
min

[
P1{µ}P−1{µ}

]
.

In its turn, β̄N can be easily bounded from below using the Hellinger affinity ρN of these
distributions. Indeed, one has [5]

β̄N ≥ 4ρ2
N = 4ρ2N

where ρ is the Hellinger affinity of P−1 and P1:

ρ =
√

P1{−L}P−1{−L}+
√

P1{L}P−1{L} = 2

√
1
4 − γ

2.

We conclude that

β̄N ≥ 4(1− 4γ2)N = 4

(
1−

4ε2

L2D2

)N

,

and
Nε2

L2D2
≥ ln

(
4

β̄N

)
≥ ln

(
4

β

)
.

1)In fact, by the Neyman-Pearson lemma, the smallest risk is attained by the likelihood ratio
T∗. In the case in question this test is simply the majority vote:

T (ξn) = 2I{2K ≥ N} − 1.
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We have proved the following

Theorem 1 Let S1(D, L) be a class of convex stochastic programs such that

• X ⊂ R is a segment of length D > 0

• function F (·, ξ) is linear – F (x , ξ) = ξx and |ξ| ≤ L.

Let M be an algorithm capable of solving all programs from S1(D, L) to accuracy ε with
reliability 1− α using the sample ξN .

Then there is a problem S ∈ S1(D, L) such that M will require a sample of length

N ≥ D2L2

ε2
ln

(
2

α

)
to output the solution.

In other words, the complexity N(S1) of S1 is below bounded by D2L2

ε2 ln
(

2
α

)
.
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Theorem 1 allows for an immediate n-dimensional extension:

Theorem 2 [15]2) Let S(D, L) be a class of convex stochastic programs such that

• X ⊂ Rn contains a Euclidean ball of diameter D > 0

• function F (·, ξ) is Lipschitz-continuous:

|F (x , ξ)− F (x ′, ξ)| ≤ L‖x − x ′‖2, ∀ξ ∈ Ξ, ∀x , x ′ ∈ X .

Then the complexity N(S) of the class S(D, L) of Lipschitz stochastic programs satisfies

N(S) ≥ D2L2

ε2
ln

(
2

α

)
.

2) Usually, the Lipschitz constant L is replaced with “standard deviation” σ of the stochastic
subgradient F ′x (x , ξ):

σ2 = EP [‖F ′x (x , ξ)− f ′(x)]‖2
2]

Note that σ2 = L2(1− 4γ2) in our simple construction.
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Observations

• Difficulty of solving stochastic programs depend on the amplitude of the random
subgradient F ′x and the size of the problem domain

• One cannot expect solving stochastic programs to “high accuracy” – 1-5% relative
accuracy seems to be the attainable limit in many “practical” applications

• One cannot expect finding approximate solution x̂ which is close to the optimal set
X∗ of (S) – this seems to be a desperate task already in the linear case

• “Regularity” of F does not help – the lower bound holds already for linear functions

• “Higher moments” of ξ do not help – the lower bound holds already for Bernoulli
random variables

• ... however, strong convexity of the objective helps...
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Lower bound for strongly convex Lipschitz programs

We say that f : X → R is strongly convex with parameter µ ≥ 0 with respect to the
norm ‖ · ‖2 if for any x , x ′ ∈ X and α ∈ [0, 1],

f (αx + (1− α)x ′) ≤ αf (x) + (1− α)f (x ′)− 1
2µα(1− α)‖x − x ′‖2

2.

Theorem 3 [17, 1] Let S ′(L, µ) be a class of convex stochastic programs such that

• X contains an Euclidean ball or radius r =
√

ε
µ

• function F (·, ξ) is Lipschitz continuous – for some L <∞ and all ξ ∈ Ξ:

|F (x , ξ)− F (x ′, ξ)| ≤ L‖x − x ′‖2

• f is strongly convex on X with parameter µ > 0.

Complexity N(S ′) of the class S ′(L, µ) admits the bound

N(S ′) ≥ κ(α)
L2

µε
.
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Upper bound by Sample Average Approximation

The classical approach to solving (S) is as follows:

• given a random sample ξ1, ..., ξN , compute the Sample Average Approximation
(SAA) f̂N of f

f̂N(x) =
1

N

N∑
i=1

F (x , ξi ),

approximate (S) by the problem

min
x∈X

f̂N(x); (SN)

• then use a deterministic algorithm to solve (SN) and use optimal the solution x̂N to
(SN) as an approximate solution to (S).
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Standard analysis of (SN) yields the following

Theorem 3 [after [18]] Suppose that

• D <∞ is the Euclidean diameter of X (that is ‖x − x ′‖2 ≤ D, ∀x , x ′ ∈ X)

• F (·, ξ) is Lipschitz-continuous for all ξ ∈ Ξ.

Then the optimal solution x̂N to (SN) satisfies

Prob

f (x̂N)− f∗ ≤ cLD

√
n ln( nN

α
)

N

 ≥ 1− α.

Theorem 3 implies an upper complexity bound for the class (S) of Lipschitz-continuus
programs by SAA:

N(SAA,S) = c ′
(
LD

ε

)2

n ln

(
LD

αε

)
which should be compared to the lower bound of Theorem 2:

N(S) ≥
(
DL

ε

)2

ln

(
2

α

)
.
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The extra factor n naturally appears in the standard complexity analysis of the SAA which relies
upon the relation

f (x̂N)− f∗ = [f (x̂N)− f̂N(x̂N)]

+[f̂N(x̂N)− f̂N(x∗)] [≤ 0]

+[f (x∗)− f̂N(x∗)]

≤ 2 supx∈X |f (x)− f̂N(x)|.

Then the uniform convergence argument (see, e.g. [16, 13]) results in the deviation bound

involving the metric entropy of the `2-ball.

Note that the extra factor is not an artefact of the proof [9]:

• one can indeed construct a family of Lipschitz-continuous functions on an `2-ball of Rn

such that the set of empirical minimizers (optimal solutions to (SN)) contains “bad
points” x̂N – such that f (x̂N)− f∗ ≥ cL unless N ≤ n.
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Recently, a much better accuracy bounds were obtained using stability argument [6]

Theorem 4 [22, 18] Suppose that

• Euclidean diameter D of X is finite

• F (·, ξ) is Lipschitz-continuous and strongly convex with parameter µ > 0 for all
ξ ∈ Ξ

Then the optimal solution x̂N to (SN) satisfies

E [f (x̂N)]− f∗ ≤ c
L2

µN
.

Furthermore, let F (·, ξ) be “just” convex, and let x̃N be the optimal solution to

min
x∈X

f̂N(x) + λ‖x − x0‖2
2, (SZ )

with λ � LD√
N

and x0 ∈ X.

Then the optimal solution x̃N to (SZ ) satisfies

E [f (x̃N)]− f∗ ≤ c ′
L2D2

√
N
.

In other words, when using penalized approximation (SZ ), N � D2L2

ε2 is sufficient to
achieve E [f (x̃N)]− f∗ ≤ ε.
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Solution by Stochastic Approximation

We assume here the stochastic black-box framework [15] of solving (S):

we consider recursive algorithms M which acquire by parts the information about the
problem instance (S):
• at step t = 0 the information available to M is X and the class S of problems (e.g.,
stochastic programs with Lipschitz constant ≤ L)
• at step t = 0, 1, ...

• given information available from steps i = 0, ..., t − 1, M form a search point
xt ∈ X

• M requests from the stochastic oracle some local information about (S) at xt

• M forms somehow an approximate solution x̄t at step t.

Here we consider the case where the oracle supplies the values zt ∈ R and yt ∈ Rn such
that

EP [zt ] = f (xt), EP [yt ] ∈ ∂f (xt).

As far as (S) is concerned, one can assume that

zt = F (xt , ξt), yt = F ′x(xt , ξt).
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(Standard) Stochastic Approximation (SA) algorithm [15]

• Chose somehow x0 ∈ X , then compute search points

xt = πX [xt−1 − γtyt ] , yt = F ′(xt−1, ξt), γt > 0

• form current approximate solution

x̄t =

[
t∑

i=1

γi

]−1 t∑
i=1

γixi−1.

Theorem 5 Suppose that X has a finite diameter D and F (·, ξ) is Lipschitz-continuous
with constant L for all ξ ∈ Ξ.
Then the SA solution x̄N with constant stepsizes γi ≡ D

L
√
N

satisfies after N steps

Prob

{
f (x̄N)− f∗ ≤ cLD

√
ln(α−1)

N

}
≥ 1− α.

I.e., complexity N(SA,S) of Stochastic Approximation on the class S(D, L) of Lipschitz
stochastic programs satisfies

N(SA,S) ≤ c ′
L2D2

ε2
ln(α−1).
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Heuristic considerations

Suppose we are minimizing a convex f (x) : X → R; we are given [f (xi ), f
′(xi )] at search

points x1, ..., xt−1 and we want to decide a new search point xt .

• The available information about f amounts to the set of affine minorants φi for f on
X :

φi (x) = f (xi ) + f ′(xi )
T (x − xi ), φi (x) ≤ f (x), i = 0, ..., t − 1.

Their average

φ̄i (x) =
1

t

t−1∑
i=0

[f (xi ) + f ′(xi )
T (x − xi )]

is also a lower bound for f on x .
• To get a new search point one could try to minimize penalized φ̄i (x) on X :

xt = argmin
x∈X

{
t−1∑
i=0

f ′(xi )
T (x − xi ) +

β

2
‖x − x̄‖2

2

}

where x̄ ∈ X is referred to as prox-center and V (x , x̄) = β
2
‖x − x̄‖2

2 as prox-function.
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Dual Stochastic Approximation (DSA) algorithm [15, 14, 10]

• Chose somehow x0 ∈ X , then compute search points

xt = πX

[
x0 −

zt
βt

]
, where zt =

t∑
i=1

yi

[
=

t∑
i=1

F ′(xi−1, ξi )

]
, βt ≥ βt−1

• form current approximate solution

x̄t =
1

t

t−1∑
i=0

xi .

Theorem 6 [14] Suppose that X has a finite diameter D and F (·, ξ) is
Lipschitz-continuous with constant L for all ξ ∈ Ξ. Then the SA solution x̄N with
parameter choice

β0 =
L

D
, βt =

L2

D2

t−1∑
i=0

β−1
i

[
= βt−1 +

L2

D2

1

βt−1

]
satisfies after N steps

Prob

{
f (x̄N)− f∗ ≤ cLD

√
ln(α−1)

N

}
≥ 1− α.
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The proof is based on replacing the “Lyapunov function” ‖ · ‖2
2 in the analysis of the classic SA

by the “dual function”

Wβ(z) = min
x∈X

zT x +
β

2
‖x − x0‖2

2, x0 ∈ X .

Note that the minimizer xβ(z) satisfies

xβ(z) = πX [x0 − z/β] .

In the simple case of X = {x ∈ Rn : ‖x‖2 ≤ R}, and x0 = 0, one has

xβ(z) =

{
− z
β
, ‖z‖2 ≤ βR,

− z
‖z‖2

R, ‖z‖2 > βR;
Wβ(z) =

{
− zT z

2β
, ‖z‖2 ≤ βR,

βR2

2
− ‖z‖2R, ‖z‖2 > βR.

Observe that

• Wβ is concave smooth function on Rn

• W ′β(z) = xβ(z)

• ‖W ′β(z)−W ′β(z ′)‖2 ≤ 1
β
‖z − z ′‖2.

Thus

Wβ(z ′) ≥ Wβ(z) + W ′β(z)T (z ′ − z)−
‖z ′ − z‖2

2

2β

= Wβ(z) + xβ(z)T (z ′ − z)−
‖z ′ − z‖2

2

2β
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Now we can write for βt ≥ βt−1,

Wβt (zt) ≥ Wβt−1
(zt) ≥Wβt−1

(zt−1) + xβt−1
(zt−1)T (zt − zt−1)−

‖zt − zt−1‖2
2

2βt−1

= Wβt−1
(zt−1) + xTt−1yt −

‖yt‖2
2

2βt−1
,

so that

yT
t xt−1 ≤Wβt (zt)−Wβt−1

(zt−1) +
L2

2βt−1
.

Then

t∑
i=1

yT
i xi−1 ≤ Wβt (zt)−Wβ0

(z0) +
L2

2

t∑
i=1

β−1
t−1 = Wβt (zt) +

L2

2

t∑
i=1

β−1
t−1.

Let x∗ ∈ X be a minimizer of f on X , we have

t∑
i=1

yT
i (xi−1 − x∗) ≤ Wβt (zt)−

[
t∑

i=1

yi

]T
x∗ +

L2

2

t∑
i=1

β−1
t−1

=
[
Wβt (zt)− zTt x∗

]
+

L2

2

t∑
i=1

β−1
t−1

≤
β

2
‖x0 − x∗‖2

2 +
L2

2

t∑
i=1

β−1
t−1 ≤

βD2

2
+

L2

2

t∑
i=1

β−1
t−1
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Note that, by convexity of f ,

f

(
1

t

t−1∑
i=0

xi

)
︸ ︷︷ ︸

=f (xt )

−f∗ ≤
1

t

t−1∑
i=0

[f (xi )− f∗] ≤
1

t

t−1∑
i=0

f ′(xi )
T (xi − x∗).

We conclude that

f (x̄t)− f∗ ≤
1

t

t−1∑
i=0

yT
i+1(xi − x∗)−

t−1∑
i=0

[yi+1 − f ′(xi )]︸ ︷︷ ︸
:=ζi+1

T (xi − x∗)


≤

βD2

2t
+

L2

2t

t∑
i=1

β−1
t−1 −

1

t

t−1∑
i=0

ζTi+1(xi − x∗).

However, ζTi+1(xi − x∗) is a martingale-difference with |ζTi+1(xi − x∗)| ≤ 2LD. By the Hoeffding
inequality,

Prob

{
t−1∑
i=0

ζTi+1(xi − x∗) ≤ −2LD
√

2t ln (α−1)

}
≤ α.

When choosing βt = L2

R2

∑t−1
i=0 β

−1
i � L

R

√
2t, we arrive at

Prob

f (x̄t)− f∗ ≥ cLD

√
ln (α−1)

t

 ≤ α.
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Stochastic approximation for strongly convex objectives

• Suppose that f (x) is strongly convex with parameter µ > 0. Then as soon as

f (x)− f∗ ≤ δ,

one has ‖x − x∗‖2 ≤
√

2δ
µ

, where x∗ ∈ X is the minimizer of f .3)

To minimize a strongly convex function one can proceed in stages: let D be the
diameter of X .

• at stage i we are given an approximate solution x̄ i−1 which satisfies, “with high
probability”

‖x̄ i−1 − x∗‖2
2 ≤ D2

i−1 ≤ 2−(i−1)D2.

We use the SA algorithm tuned for D = Di until an approximate solution x̄ i

satisfying

‖x̄ i − x∗‖2
2 ≤ D2

i =
D2

i−1

2
is not available.

3)It suffices to note that for strongly convex f , f (x)− f∗ ≥ µ
2
‖x − x∗‖2.
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Theorem 7 [17, 11] Suppose that X is a convex, closed and bounded set ⊂ Rn, F (·, ξ)
is Lipschitz-continuous on X with constant L for all ξ ∈ Ξ, and such that f is strongly
convex with parameter µ > 0.
Then complexity N(SA,S ′) of the stage-wise SA algorithm satisfies

N(SA,S ′) ≤ c
L2 ln(α−1)

µε
.

Furthermore, the approximate solution x̄N provided by the algorithm satisfies

‖x̄N − x∗‖2 ≤
√

2ε

µ
.
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Taking into account problem geometry [15]

One can easily see that the statement of Theorem 2 can be rewritten as follows:

Theorem 8 Let ‖ · ‖ be a norm on Rn, and let S(D, L, ‖ · ‖) be a class of convex
stochastic programs such that

• X ⊂ Rn contains a ball of norm ‖ · ‖ of diameter D > 0

• function F (·, ξ) is Lipschitz-continuous:

|F (x , ξ)− F (x ′, ξ)| ≤ L‖x − x ′‖, ∀ξ ∈ Ξ, ∀x , x ′ ∈ X .

Then complexity N(S) of the class S(D, L, ‖ · ‖) satisfies

N(S) ≥ D2L2

ε2
ln

(
2

α

)
.

28 / 39



Note that under the premise of Theorem 8, the stochastic subgradient F ′x(x , ξ) satisfies

‖F ′x(x , ξ)‖∗ ≤ L

where ‖ · ‖∗ is the norm conjugate to ‖ · ‖.

Example. Let ‖ · ‖ = ‖ · ‖1. Then ‖ · ‖∗ = ‖ · ‖∞, and for y ∈ Rn,

‖y‖∞ ≤ ‖y‖2 ≤
√
n‖y‖∞

(these bound is tight).

In other words, the Lipschitz constant of F with respect to ‖ · ‖1 may be
√
n-times

smaller than if it were measured using ‖ · ‖2.

Note, that a “natural” choice of the norm ‖ · ‖ to use would be the norm ‖ · ‖X induced
by the set X itself – such that the set

X = 1
2 (X − X )

is the unit ball of ‖ · ‖.
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There are two questions to be answered:

• is the bound of Theorem 8 tight?

• when applicable, can we efficiently implement an optimization routine which
attains the lower bound of Theorem 8?

The general answer is “NO”, but

• the answer is “yes” in some important situations [15], e.g., when the norm ‖ · ‖ is
the `1-norm and the feasible set is “simple”;

• recent research allowed to develop new algorithms of stochastic approximation,
which attain the “corrected bounds” [20].
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Theorem 9 [15] Let S(D, L, ‖ · ‖p) be a class of convex stochastic programs such that

• X ⊂ Rn contains a ball of norm ‖ · ‖p of diameter D > 0

• function F (·, ξ) is Lipschitz-continuous:

|F (x , ξ)− F (x ′, ξ)| ≤ L‖x − x ′‖p, ∀ξ ∈ Ξ, ∀x , x ′ ∈ X .

Then complexity N(S) of the class S(D, L, ‖ · ‖p) satisfies

N(S) ≥ c(α)

(
LD

ε

)min(2,p)

for p > 1,

and

N(S) ≥ c(α)

(
LD

ε

)2

ln[n] for p = 1.

Corresponding upper bounds are provided by the Mirror Descent algorithm

• General Mirror Descent scheme: Nemirovski 1977 [15]

• Modern “Proximal form”: Beck & Teboulle 2003 [4]

• Primal-dual versions: Nesterov 2002-2005 [14]
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Mirror Descent: the setup

Let ‖ · ‖ be a norm on Rn, and let ω :X → R be differentiable on X and strongly convex
(with parameter 1) with respect to ‖ · ‖:

ω(x ′) ≥ ω(x) +∇ω(x)T (x ′ − x) + 1
2‖x
′ − x‖2,∀x , x ′ ∈ X .

For x0 = argminx∈X ω(x) we denote

V (x , x0) = ω(x)− ω(x0)−∇ω(x0)T (x − x0)

(Bregman divergence [5]).

By construction, V (·, x0) is strongly convex, V (x0, x0) = 0, and
x0 = argminx∈X V (x , x0). Note that

V (x , x0) ≥ 1
2‖x − x0‖2.

We refer to V as prox-function.
We denote ΩX = [maxx,x′∈X V (x ′, x)]1/2 the ω-diameter of X .
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Mirror Descent algorithm [14]

The “dual version” of the Mirror Descent algorithm, associated with ω(·) is as follows:

• Set the prox-center x0 = argminx∈X ω(x), put β0 > 0 and z0 = 0.

• At iteration t = 1, ..., given xt−1 ∈ X , compute

yt = F (xt−1, ξt), zt =
t∑

i=0

yi ;

and define the new search point xt :

xt = argmin
x∈X

[
zTt x +

βt
2
V (x , x0)

]
(Bregman projection or prox-transformation of zt).

• Form the current approximate solution x̄t according to

x̄t =
1

t

t−1∑
i=0

xi .
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Theorem 9 [14] Suppose that X has a finite ω-diameter ΩX and F (·, ξ) is
Lipschitz-continuous with constant L with respect to the norm ‖ · ‖ for all ξ ∈ Ξ. Then
the MD solution x̄N with the choice of parameters

β0 =
L

ΩX
, βt =

L2

Ω2
X

t−1∑
i=0

β−1
i

satisfies after N steps

Prob

{
f (x̄N)− f∗ ≤ cLΩX

√
ln(α−1)

N

}
≥ 1− α.

As a result, the complexity N(MD,S) of MD algorith on the class S of Lipschitz
problems admits the bound

N(MD,S) ≤ c ′
L2Ω2

X

ε2
ln(α−1).
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Observations

[1] The complexity of the class depends on the geometry of the feasible set through
its ω-diameter. When ΩX is “moderate”, MD algorithm exhibits
dimension-independent convergence.

Let, for instance, ‖ · ‖ be the `p-norm, and let

X = {x ∈ R : ‖x‖p ≤ R}.
In this case, ΩX = O(1)R for 1 < p ≤ 2, and ΩX = O(ln n)R for p = 1.

For these values of p the complexity bound of MD fits the lower bound of
Theorem 8.

On the other hand, when p > 2, there is no strongly convex with respect to ‖ · ‖p
function with variation on X independent of n.

[2] In order to implement the MD algorithm, one have to be able to solve efficiently
the auxiliary projection problem

min
x∈X

[
zT (x − x0) +

β

2
V (x , x0)

]
.

When [1] and [2] are satisfied we refer to the situation as favorable geometry.
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