Stratégies bayésiennes et fréquentistes dans un modèle de bandit

Emilie Kaufmann

thèse effectuée à Telecom ParisTech, co-dirigée par Olivier Cappé, Aurélien Garivier et Rémi Munos

Journées MAS, Grenoble, 30 août 2016
The multi-armed bandit model

\(K \) arms = \(K \) probability distributions (\(\nu_a \) has mean \(\mu_a \))

At round \(t \), an agent:

- chooses an arm \(A_t \)
- observes a sample \(X_t \sim \nu_{A_t} \)

using a sequential sampling strategy (\(A_t \)):

\[A_{t+1} = F_t(A_1, X_1, \ldots, A_t, X_t). \]

Generic goal: learn the best arm, \(a^* = \arg\max_a \mu_a \)
Regret minimization in a bandit model

Samples = rewards, (A_t) is adjusted to

- maximize the (expected) sum of rewards,

$$\mathbb{E} \left[\sum_{t=1}^{T} X_t \right]$$

- or equivalently minimize the regret:

$$R_T = \mathbb{E} \left[T\mu^* - \sum_{t=1}^{T} X_t \right]$$

$$\mu^* = \mu_a^* = \max_a \mu_a$$

⇒ Exploration/Exploitation tradeoff
Modern motivation: recommendation tasks

For the t-th visitor of a website,

- recommend a movie A_t
- observe a rating $X_t \sim \nu_{A_t}$ (e.g. $X_t \in \{1, \ldots, 5\}$)

Goal: maximize the sum of ratings
Back to the initial motivation: clinical trials

For the \(t \)-th patient in a clinical study,

- chooses a \textit{treatment} \(A_t \)
- observes a \textit{response} \(X_t \in \{0, 1\} \): \(\mathbb{P}(X_t = 1) = \mu_{A_t} \)

\textbf{Goal:} maximize the number of patient healed during the study
Back to the initial motivation: clinical trials

For the t-th patient in a clinical study,

- chooses a treatment A_t
- observes a response $X_t \in \{0, 1\}$: $\mathbb{P}(X_t = 1) = \mu_{A_t}$

Goal: maximize the number of patient healed during the study

Alternative goal: allocate the treatments so as to identify as quickly as possible the best treatment (no focus on curing patients during the study)
Two bandit problems

<table>
<thead>
<tr>
<th>Bandit algorithm</th>
<th>Regret minimization</th>
<th>Best arm identification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sampling rule (A_t)</td>
<td>sampling rule (A_t)</td>
</tr>
<tr>
<td></td>
<td>horizon (T)</td>
<td>stopping rule (\tau)</td>
</tr>
<tr>
<td></td>
<td>minimize (R_T = \mathbb{E}\left[\mu^* T - \sum_{t=1}^{T} X_t\right])</td>
<td>recommendation rule (\hat{a}_\tau)</td>
</tr>
<tr>
<td>Objective</td>
<td>(\mu = (\mu_1, \ldots, \mu_K))</td>
<td>ensure (\mathbb{P}(\hat{a}_\tau = a^*) \geq 1 - \delta)</td>
</tr>
<tr>
<td>Exploration/Exploitation</td>
<td>pure Exploration</td>
<td>and minimize (\mathbb{E}[\tau])</td>
</tr>
</tbody>
</table>

→ Goal: find efficient, optimal algorithms for both objectives

In the presentation, we focus on Bernoulli bandit models
Outline

1. Asymptotically optimal algorithms for regret minimization

2. A Bayesian approach for regret minimization
 - Bayes-UCB
 - Thompson Sampling

3. Optimal algorithms for Best Arm Identification
1. Asymptotically optimal algorithms for regret minimization

2. A Bayesian approach for regret minimization
 - Bayes-UCB
 - Thompson Sampling

3. Optimal algorithms for Best Arm Identification
Optimal algorithms for regret minimization

\[\mu = (\mu_1, \ldots, \mu_K). \quad N_a(t) : \text{number of draws of arm } a \text{ up to time } t \]

\[R_\mu(A, T) = \mu^* T - \mathbb{E}_\mu \left[\sum_{t=1}^{T} X_t \right] = \sum_{a=1}^{K} (\mu^* - \mu_a) \mathbb{E}_\mu[N_a(T)] \]

Notation: Kullback-Leibler divergence

\[d(\mu, \mu') := KL(B(\mu), B(\mu')) \]

\[= \mu \log(\mu/\mu') + (1 - \mu) \log((1 - \mu)/(1 - \mu')) \]

- [Lai and Robbins, 1985]: for uniformly efficient algorithms,

\[\mu_a < \mu^* \Rightarrow \liminf_{T \to \infty} \frac{\mathbb{E}_\mu[N_a(T)]}{\log T} \geq \frac{1}{d(\mu_a, \mu^*)} \]

A bandit algorithm is **asymptotically optimal** if, for every \(\mu \),

\[\mu_a < \mu^* \Rightarrow \limsup_{T \to \infty} \frac{\mathbb{E}_\mu[N_a(T)]}{\log T} \leq \frac{1}{d(\mu_a, \mu^*)} \]
Algorithms: naive ideas

- **Idea 1**: Choose each arm T/K times
 \[A_{t+1} = \argmax_a \hat{\mu}_a(t) \]
 \Rightarrow \text{EXPLOITATION}

- **Idea 2**: Always choose the best arm so far
 \[A_{t+1} = \argmax_a \hat{\mu}_a(t) \]
 \Rightarrow \text{EXPLOITATION}

...Linear regret
Algorithms: naive ideas

- **Idea 1**: Choose each arm \(T/K \) times
 \(\Rightarrow \) **EXPLORATION**

- **Idea 2**: Always choose the best arm so far
 \[A_{t+1} = \arg\max_a \hat{\mu}_a(t) \]
 \(\Rightarrow \) **EXPLOITATION**
 ...Linear regret

- **Idea 3**: First explore the arms uniformly, then commit to the empirical best until the end
 \(\Rightarrow \) **EXPLORATION** followed by **EXPLOITATION**
 ...Still sub-optimal
Mixing Exploration and Exploitation: the UCB approach

\[I_a(t) = [\text{LCB}_a(t), \text{UCB}_a(t)] \]

a confidence interval on \(\mu_a \), based on observation up to round \(t \).

A UCB-type (or optimistic) algorithm chooses at round \(t \)

\[A_{t+1} = \arg\max_{a=1 \ldots K} \text{UCB}_a(t). \]
Mixing Exploration and Exploitation: the UCB approach

\[I_a(t) = [\text{LCB}_a(t), \text{UCB}_a(t)] \]

A confidence interval on \(\mu_a \), based on observation up to round \(t \).

- A UCB-type (or optimistic) algorithm chooses at round \(t \)
 \[A_{t+1} = \arg\max_{a=1 \ldots K} \text{UCB}_a(t). \]

How to choose the Upper Confidence Bounds?
- use appropriate deviation inequalities...
- ... in order to guarantee that
 \[\mathbb{P}(\mu_a \leq \text{UCB}_a(t)) \gtrsim 1 - t^{-1} \]
The KL-UCB algorithm

\(\hat{\mu}_a(t) \): empirical mean of rewards from arm \(a \) up to time \(t \).

- A deviation inequality involving the KL-divergence:
 \[
 \mathbb{P}(N_a(t)d(\hat{\mu}_a(t), \mu_a) \geq \gamma) \leq 2e(\log(t) + 1)\gamma e^{-\gamma}
 \]

- The KL-UCB algorithm: \(A_{t+1} = \arg \max_a u_a(t) \) with
 \[
 u_a(t) := \max \left\{ q : d(\hat{\mu}_a(t), q) \leq \frac{\log(t) + c \log \log(t)}{N_a(t)} \right\},
 \]

[Cappé et al. 13]: KL-UCB satisfies, for \(c \geq 5 \),

\[
\mathbb{E}_\mu[N_a(T)] \leq \frac{1}{d(\mu_a, \mu^*)} \log T + O(\sqrt{\log(T)}).
\]
Outline

1. Asymptotically optimal algorithms for regret minimization

2. A Bayesian approach for regret minimization
 - Bayes-UCB
 - Thompson Sampling

3. Optimal algorithms for Best Arm Identification
A frequentist or a Bayesian model?

\[\mu = (\mu_1, \ldots, \mu_K). \]

- Two probabilistic modelings

<table>
<thead>
<tr>
<th>Frequentist model</th>
<th>Bayesian model</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu_1, \ldots, \mu_K) unknown parameters</td>
<td>(\mu_1, \ldots, \mu_K) drawn from a prior distribution: (\mu_a \sim \pi_a)</td>
</tr>
<tr>
<td>arm (a): ((Y_{a,s})_s) i.i.d. (\sim \mathcal{B}(\mu_a))</td>
<td>arm (a): ((Y_{a,s})_s \mid \mu) i.i.d. (\sim \mathcal{B}(\mu_a))</td>
</tr>
</tbody>
</table>

- The regret can be computed in each case

\[
R_T(A, \mu) = \mathbb{E}_\mu \left[\sum_{t=1}^{T} (\mu^* - \mu_{A_t}) \right]
\]

\[
R_T(A, \pi) = \mathbb{E}_{\mu \sim \pi} \left[\sum_{t=1}^{T} (\mu^* - \mu_{A_t}) \right] = \int R_T(A, \mu) d\pi(\mu)
\]

Emilie Kaufmann
Modèles de bandit
Frequentist and Bayesian algorithms

- Two types of tools to build bandit algorithms:

<table>
<thead>
<tr>
<th>Frequentist tools</th>
<th>Bayesian tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLE estimators of the means</td>
<td>Posterior distributions</td>
</tr>
<tr>
<td>Confidence Intervals</td>
<td>(\pi_a^t = \mathcal{L}(\mu_a</td>
</tr>
</tbody>
</table>

- One can separate tools and objective:

We present efficient **Bayesian algorithms for regret minimization**
1 Asymptotically optimal algorithms for regret minimization

2 A Bayesian approach for regret minimization
 - Bayes-UCB
 - Thompson Sampling

3 Optimal algorithms for Best Arm Identification
The Bayes-UCB algorithm

\[\pi_t^a \text{ the posterior distribution over } \mu_a \text{ at the end of round } t. \]

Algorithm: Bayes-UCB [K., Cappé, Garivier 2012]

\[A_{t+1} = \arg\max_a Q \left(1 - \frac{1}{t \log t} c, \pi^t_a \right) \]

where \(Q(\alpha, p) \) is the quantile of order \(\alpha \) of the distribution \(p \).

Bernoulli reward with uniform prior:

- \(\pi_0^a \sim \text{i.i.d. } U([0, 1]) = \text{Beta}(1, 1) \)
- \(\pi^t_a = \text{Beta}(S_a(t) + 1, N_a(t) - S_a(t) + 1) \)
Bayes-UCB in practice
Bayes-UCB is asymptotically optimal

Theorem [K., Cappé, Garivier 2012]

Let $\epsilon > 0$. The Bayes-UCB algorithm using a uniform prior over the arms and parameter $c \geq 5$ satisfies

$$
\mathbb{E}_\mu[N_a(T)] \leq \frac{1 + \epsilon}{d(\mu_a, \mu^*)} \log(T) + o_{\epsilon,c}(\log(T)).
$$
Bayes-UCB index is close to KL-UCB indices:

Lemma

\[
\tilde{u}_a(t) \leq q_a(t) \leq u_a(t)
\]

with:

\[
u_a(t) = \max \left\{ q : d(\hat{\mu}_a(t), q) \leq \frac{\log(t) + c \log \log(t)}{N_a(t)} \right\}
\]

\[
\tilde{u}_a(t) = \max \left\{ q : d\left(\frac{N_a(t)\hat{\mu}_a(t)}{N_a(t)+1}, q\right) \leq \frac{\log \left(\frac{t}{N_a(t)+2}\right) + c \log \log(t)}{(N_a(t)+1)} \right\}
\]

Bayes-UCB **automatically** builds confidence intervals based on the Kullback-Leibler divergence!
Where does it come from?

We have a **tight bound on the tail of posterior distributions** (Beta distributions)

- **First element**: link between Beta and Binomial distribution:

 \[
 \mathbb{P}(X_{a,b} \geq x) = \mathbb{P}(S_{a+b-1,1-x} \geq b)
 \]

- **Second element**: Sanov inequalities

Lemma

For \(k > nx \),

\[
\frac{e^{-nd\left(\frac{k}{n},x\right)}}{n + 1} \leq \mathbb{P}(S_{n,x} \geq k) \leq e^{-nd\left(\frac{k}{n},x\right)}
\]
Outline

1. Asymptotically optimal algorithms for regret minimization
2. A Bayesian approach for regret minimization
 - Bayes-UCB
 - Thompson Sampling
3. Optimal algorithms for Best Arm Identification
Thompson Sampling

\((\pi_1^t, \ldots, \pi_K^t) \) posterior distribution on \((\mu_1, \ldots, \mu_K)\) at round \(t\).

Algorithm: Thompson Sampling

Thompson Sampling is a randomized Bayesian algorithm:

\[
\forall a \in \{1 \ldots K\}, \quad \theta_a(t) \sim \pi_a^t \\
A_{t+1} = \arg\max_a \theta_a(t)
\]

“Draw each arm according to its posterior probability of being optimal”

- the first bandit algorithm, introduced by [Thompson 1933]
Posterior distributions of the mean of arm 1 (top) and arm 2 (bottom) in a two-armed bandit model
Thompson Sampling is asymptotically optimal

- good empirical performance in complex models
- first logarithmic regret bound by [Agrawal and Goyal 2012]

Theorem [K.,Korda,Munos 2012]
For all $\epsilon > 0$,

$$\mathbb{E}_\mu[N_a(T)] \leq \frac{1 + \epsilon}{d(\mu_a, \mu^*)} \log(T) + o_{\mu,\epsilon}(\log(T)).$$
1. Asymptotically optimal algorithms for regret minimization

2. A Bayesian approach for regret minimization
 - Bayes-UCB
 - Thompson Sampling

3. Optimal algorithms for Best Arm Identification
A Best Arm Identification algorithm \((A_t, \tau, \hat{a}_\tau)\) is \(\delta\)-PAC if

\[
\forall \mu, \ P_\mu(\hat{a}_\tau = a^*(\mu)) \geq 1 - \delta.
\]

Theorem [Garivier and K. 2016]

For any \(\delta\)-PAC algorithm,

\[
\mathbb{E}_\mu[\tau] \geq T^*(\mu) \log \left(\frac{1}{2.4\delta} \right),
\]

where

\[
T^*(\mu)^{-1} = \sup_{w \in \Sigma_K} \inf_{\lambda: a^*(\lambda) \neq a^*(\mu)} \sum_{a=1}^{K} w_a d(\mu_a, \lambda_a)
\]

with \(\Sigma_K = \{w \in [0, 1]^K : \sum_{i=1}^K w_i = 1\}\).
Optimal proportion of draws

The vector

\[w^*(\mu) = \arg\max_{w \in \Sigma_K} \inf_{\lambda: a^*(\lambda) \neq a^*(\mu)} \sum_{a=1}^{K} w_a d(\mu_a, \lambda_a) \]

contains the optimal proportions of draws of the arms, i.e. an algorithm matching the lower bound should satisfy

\[\forall a \in \{1, \ldots, K\}, \quad \frac{\mathbb{E}_{\mu}[N_a(\tau)]}{\mathbb{E}_{\mu}[\tau]} \simeq w_a^*(\mu). \]

- Building on this notion of optimal proportions, one can exhibit an asymptotically optimal algorithm:

\[\lim_{\delta \to \infty} \frac{\mathbb{E}_{\mu}[\tau_\delta]}{\log(1/\delta)} = T^*(\mu). \]
We saw two Bayesian algorithms that are good alternative to KL-UCB for regret minimization because:
- they are also asymptotically optimal in simple models
- they display better empirical performance
- ... they can be easily generalized to more complex models

Algorithms for regret minimization and BAI are very different!
- playing mostly the best arm vs. optimal proportions

\[R_T \simeq \left(\sum_{a \neq a^*} \frac{\mu^* - \mu_a}{d(\mu_a, \mu^*)} \right) \log(T) \]
\[\mathbb{E}_{\mu}[\tau] \simeq T^*(\mu) \log \left(\frac{1}{\delta} \right) \]
Merci de votre attention.

Grenoble,
du 29 au 31 août 2016.
Campus universitaire de Saint-Martin-d'Hères
At time t, a set of 'contexts' $D_t \subset \mathbb{R}^d$ is revealed.

$= \text{characteristics of the items to recommend}$

The model:
- if the context $x_t \in D_t$ is selected
- a reward $r_t = x_t^T \theta + \epsilon_t$ is received

$$\theta \in \mathbb{R}^d = \text{underlying preference vector}$$

A Bayesian model: (with Gaussian prior)

$$r_t = x_t^T \theta + \epsilon_t, \quad \theta \sim \mathcal{N} \left(0, \kappa^2 I_d \right), \quad \epsilon_t \sim \mathcal{N} \left(0, \sigma^2 \right).$$

Explicit posterior: $p(\theta | x_1, r_1, \ldots, x_t, r_t) = \mathcal{N} \left(\hat{\theta}(t), \Sigma_t \right)$.

Thompson Sampling:

$$\tilde{\theta}(t) \sim \mathcal{N} \left(\hat{\theta}(t), \Sigma_t \right), \quad \text{and} \quad x_{t+1} = \arg\max_{x \in \mathcal{D}_{t+1}} x^T \tilde{\theta}(t).$$