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1. Introduction



Pattern & Process

» Design probabilistic models of evolutionary
processes...

» ...Generating similar patterns as those
observed in nature, and...

> ...Allowing for the inference of these processes
from real data...

» ..Assuming the data is a phylogeny (gene tree,
species tree,...) already inferred from MSA.




Phylogenetic Trees
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Two Questions About Macroevolution

Reconstruct the past of biodiversity : What processes underpin the observed macro-evolutionary
patterns?

» Q1:"Can we test the possibility that some aspects of the
evolutionary record behave as stochastic variables ?" (Raup etal 1973)

Example of phylogenetic trees = Most basic pattern left by
macroevolutionary history
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Two Questions About Macroevolution

Reconstruct the past of biodiversity : What processes underpin the observed macro-evolutionary
patterns?

» Q1:"Can we test the possibility that some aspects of the
evolutionary record behave as stochastic variables ?" (Raup etal 1973)

Example of phylogenetic trees = Most basic pattern left by
macroevolutionary history

> Q2: "Are there mathematically simple or biologically plausible
stochastic models for phylogenetic trees whose realizations mimic
actual trees ?" (aldous 2001)

» Alternatively Q2 : Can we infer the most likely evolutionary process
to have generated the tree ?



Difficulty of characterizing trees

v

Comparing two trees : distance ? Robinson-Foulds,
Gromov-Hausdorff, Billera-Holmes-Vogtman...

v

Characterizing one tree : distance to some reference tree ?

v

A distribution of trees : average tree ?

v

Real functions of trees = statistic, likelihood

» Requires stochastic models of trees

» Compare statistic to its distribution under null model (Q1)

» Fitanon-null model (Q2)
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2. Characterizing Trees



Perfectly Balanced Tree (A) vs Caterpillar Tree (B)
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Model-free statistics of trees | : Using topology only

See Shao & Sokal (1990), Kirkpatrick & Slatkin (1993), Mooers & Heard (1997)

Local statistics
» ¢; = # nodes on the path from the root to tip /

> Smin(v) = # tips in smaller daughter clade of node v
» Balance of node v = smin(v)/Smax(v)

Global statistics
» Sackin index (sackin1972)

1
n 2
1
» Colless index (Colless 1982)

2
= 2) 2 (Smax(¥) = smn(v)



Model-free statistics of trees Il : Using branch lengths also
Local statistics
» ‘Distinctiveness’ = length of external edge of tip i (Redding et al 2008)

» Local Branching Index (Luksza & Laessig 2014, Neher et al 2014)

_ / A0/ g
tree

Global statistics

» Phylogenetic Diversity PD = Total Length of Tree = > _, kg
with g, = internode duration (vane-wright et al 1991, Faith 1992)

» Lineage-Through-Time plot
» Gamma (Cox & Lewis 1966, Pybus & Harvey 2000)
1 n—1 i PD
73 2aica 2k—a Kk — 5

T pp//2(n-2)




Understanding the origin of patterns

> 1960’s : Root imbalance = radiation undergone by the larger daughter
subclade?
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Understanding the origin of patterns

> 1960’s : Root imbalance = radiation undergone by the larger daughter
subclade?

» The ‘Woods Hole’ group (Raup, Gould, Schopf, Simberloff) advocates
for "a clearer separation of stochastic and deterministic elements in
the evolutionary record" (Raup etal1973)

> Hy : ‘pattern is not distinguishable from that generated by a Yule pure
birth process’... vs key adaptations, adaptive radiations, etc.

» Root balance under the Yule model is uniform !
"How different, then, is the real world from the stochastic system ?
The answer would seem to be ‘not very’ — the outstanding feature of
real and random clades is their basic similarity" (Gould et al 1977, Savage 1983)

» Empirical root balance # uniform (slowinski 1990, Guyer & Slowinski 1991, 93)



Aldous’ Markov branching model on binary tree shapes

Aldous (1996, 2001)

» Assume we are given distributions g, on {1,...,.n—1},n > 2

» Recursively split each subset of n balls according to g, (r.vs K, below)
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> g, uniform yields the same tree shape as a Yule tree



Sampling consistency

» Atree modelis a family of probability distributions (P,) on
(exchangeably labelled) tree shapes with n tips

v

Call 7, arandom tree with law P,

v

Call T} the tree obtained by removing one tip from T, (say the tip
labelled n +1)

v

The model is said sampling consistent if T, and T/, have the same
distribution.

v

Example : Kingman coalescent.



Aldous’ Markov branching model

Theorem (Haas et al 2008, Lambert 2016)
A MB tree model is sampling-consistent iff it there is a function f s.t.

an(i) = an(F)”! <”> /0 (= X)) e

Construction
» Color dots are uniformly distributed in the interval

> Intervals are fragmented by r.v. with density ~ f
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Aldous’ Markov -splitting model on binary tree shapes

Aldous (1996, 2001), Maliet, Gascuel & Lambert (2016)

» The 3-splitting modelis for B € (—2,00): f(x) = cx®(1 — x)?

» Imbalance decreases with 8

» 3 = 0under the Yule model (= Q1)

Cat PDA ERM
-2 -1.5 -1 0 Beta
B Description Median split

-2 Completely unbalanced

—-1.5 PDA model

-1 Unnamed

0 Markov model

o0 An almost completely balanced model

1
1.5
Jm
m/4
m/2




Estimating 3 in real phylogenies

Smin VS Smin + Smax  (Aldous 2001) MLE of 8 (Blum & Frangois 2006)
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Q2 : "Are there mathematically simple/biologically plausible stochastic
models for phylogenetic trees whose realizations mimic actual trees ?"

(Aldous 2001) or "Why 8 ~ —17"
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3. Lineage-Based Models



Birth-Death Models of Macroevolution ee200s)

» Species seen as particles that can split (speciation) and die
(extinction)

» Rates b(t,n,a,i)and d(t,n,a,i) may depend upon:
> timet
}J | J » number n of standing particles
J} } > anon-heritable trait o (e.g., age)
]

» a heritable trait/

Yule model : b = constant, d = 0.



Reconstructed Tree

Reconstructed tree

-

0

> ‘Reconstructed tree’ or ‘reduced tree’ at height T

=remove all lineages extinct by T (fixed time).

» Q2 : Arethere universal conditions on the rates for which the

reconstructed treehas 8 =~ —17?

» Q2’:What s the law of the reconstructed tree under the model ?
Can we compute the likelihood of a given ultrametric (clock-like)

phylogenetic tree under the model ?



Classifying Lineage-Based Models

Lambert (2010), Lambert & Stadler (2013)

» A (partial) positive answer to Q2’:

The likelihood of reconstructed trees always has an explicit product
form IFF b = b(t) and d = d(t, a).

= The reconstructed tree is a ‘coalescent point process’ [...]

» A (partial) negative answer to Q2:

Reconstructed trees always have the same topology in distribution
asYule trees (8 = 0) IFF b = b(t,n) and d = d(t,n,a)

= Assoonasb = b(t,n) and d = d(t,n,a), estimate 3 ~ 0

20



The CPP distribution

Rannala (1997), Popovic (2004), Aldous & Popovic (2005)

CPP = Coalescent Point Process = Oriented tree whose node depths
Hq, H,, ..., form a sequence of iid random variables killed at its first
value larger than T.
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b = b(t) and d = d(t, a) always produce CPP

Assume that b = b(t) and d = d(t, a).
Set g(t, s) the density at time s of the extinction time of a species born at
timet.

Theorem (Lambert & Stadler 2013)

The reconstructed (oriented) tree is a CPP with typical node depth H,
where the function F = 1/P(H > ) is the unique solution to the following
linear integro-differential equation

T

F'(t) = b(t) (F(t) — ds F(s)g(t,s)> t>0,

T—t
with initial condition F(0) = 1.

The result still holds with missing species/mass extinction events : each
species is removed independently with the same probability p.

22



Missing species

M=




Mass extinction gvent




Special cases

» If b = b(t) and d = d(t) (kendall 1948, Nee et al 1994)

.
F(ty=1+ [ dsb(s)els dE=Dw
Tt

» If bis constantand d = d(a), then g(s,t) = g(t — s) [if a the age
g(a) =d(a)e” J&' d59(9)] (Lambert 2010)

F'=b(F—Fxg),

» Mass extinction event with survival probability p attime T — s

R = F(t) ifo<t<s
P (0= p)F(s) + pF(t) ifs<t<T,

25



Appl.1 Diversification of Mammals
Stadler "Mammalian Phylogeny Reveals Recent Diversification Rate Shifts" PNAS (2011)
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Appl.2 Do species age?

Alexander, Lambert & Stadler "Quantifying Age-dependent Extinction from Species Phylogenies"
Systematic Biology (2015)

Gamma distributed lifetime (k, s > 0), with mean m := ks

gla) =T(k)"'s~kakTe /s

» Test on simulations: accurate MLEs of band m

» MLE on Aves phylogeny = 9993 extant bird sp
(Jetz et al 2012)

» Exponential model rejected (p = 107")

» Shape parameter k >> 1: extinction rate
increases with age

» Average lifetime m = 15.26 My
» Speciationrate b = 0.108 My !

27



Appl.3 How long does speciation take ?

Etienne, Morlon, Lambert "Estimating the Duration of Speciation from Phylogenies" Evolution (2014)

Model of Protracted Speciation (rosindell et al 2010, Etienne & Rosindell 2012)

» Species are ensembles of populations, each population gradually
diverges from mother species

» Newborn populations are incipient, become good after some random
time = new species

» Speciation stage = non-heritable trait

10
2
[
o 8 » Duration of speciation = Time before a
S 6 good sp appears in the pop genealogy
5
g4 » Test on simulations : efficient inference of
§ 5 duration of speciation
0 » Left: duration of speciation inferred in 46

-2 -1 0
10Iog(Duration of speciation)

bird clades (in My)
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A positive answer to Q27

Hagen, Hartmann, Steel, Stadler "Age-Dependent Speciation Can Explain the Shape of Empirical

Phylogenies" Systematic Biology (2015)

. c) 3
» b = b(a) parameterized by 8
o & 8
b(a) = ca g1 . L ¥

s
= T 1 Of¥s 3. Te §

> Estimates of ¢ liein (0,1): o SaaThE

L N — 5 .l “ °
speciation rate decreases 5 10 20 50 200 500 2000

with age Number of tips

For ¢ = 0.6, the reconstructed tree has g ~ —1.

Q2:"Why B~ —17"

Counts
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A positive answer to Q27

Hagen, Hartmann, Steel, Stadler "Age-Dependent Speciation Can Explain the Shape of Empirical
Phylogenies" Systematic Biology (2015)

. c) 3

» b = b(a) parameterized by 8

g1 z g

b(a) = ca s . ¥

Q. o

. . T Xl S

> Estimates of ¢ liein (0,1): - A

speciation rate decreases ! 5 10 20 50 200 500 2000

with age Number of tips Counts

For ¢ = 0.6, the reconstructed tree has g ~ —1.
Q2:"Why g ~ —17"

— "Because ¢ =~ 0.6";-)

29
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4. A Simple Individual-Based Model
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Goal

In this section, our goal is to propose :

» Abiologically reasonable model of phylogeny

» Individual-based

» Where species play different roles

» Mathematically tractable

» Fitting empirical patterns

31



The Red Queen Hypothesis

> “Old species are continually replaced by younger, fitter species”
» Key innovations, niche invasions, co-evolutionary arms races

» No parameterization of fitness
= fitness mediated by order of appearance

32



Asymmetric multispecies model

Let A\ > > 0,c > d > 0,and K = scaling parameter.

» Individual-based model with n species = multitype logistic branching
[process (Ethier & Kurtz 1980, Lambert 2005)

> Per capita birth rate \, death rate

» Death by competition at rate c; felt by each ind of sp /, from each ind
of sp j, where sp / is younger than sp j and

C,'jZO

Ci = C/K
G = d/K

33



Large Population Limit

» Now species have levels
Species at level 1 = youngest species,
Species at level 2 = 2nd youngest species,...

» IfK~'X;(0) converge as K — oo, then K~ '(X;) = (x;) (kurtz1981)

X = )\—,u—cx,—dZXj Xi
j<i
which, letting x := A%“ anda :=1— g has equilibrium state

lim xi(t) =: x; = ka! .
t—o0

» Younger species are more abundant.

34



Speciation by Point Mutation

Each newborn is a mutant with probability 4, where for all vV > 0,

1

—VK
e ey < ——
K™ Kink

Separation of timescales (champagnat 2006) as K — oo each new mutant
arises
» after the populations have reached their deterministic equilibrium
» before macroscopic departure from this equilibrium.

In the mutation timescale, i.e., when time is accelerated by a factor 1/Kzy,

» The descendance of a mutant reaches macroscopic abundance with
probability 1 — 1/ A
> Xi =~ KX;

> Species i produces a mutant at rate ex(KX;)/Kex = X;

35



Statement

Theorem
Set Ty := first time when the number of species exceeds N.

Let (N¢; t > 0) be a pure-birth process with birth rate

= (1-5)

i=1

Then, as K — oc, the process K~ '(X;) (K%K (t A TN)) converges (fdd) to the
process (X1, X2, ..., Xn,—1,0,...,0).

36



A Non-Exchangeable Coalescent Process

In the new timescale at stationarity, at constant rate
“i (0-5%)
p= 1—a A

Speciation occurs from the sp at level i, with proba (1 — o) o/~

v

> All species simultaneously “shift up” their level by +1

» The new species occupies the newly vacated bottom level = youngest
species.

» Backwards-in-time picture = Shift-Down/Look-Up Coalescent

37



Speciation in forward time...

Levels

forward time

38



...Coalescence in backward time

Levels

backward time
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Simulated trees with 20 tips

40



Simulated trees with 20 tips

a=0.7

[l




Simulated trees with 20 tips

il
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I nte rtWi n | n g (Rogers & Pitman 1981)

Let ((X¢, Y:),t > 0) be a Markov process with state-space £ x F with

N

generator G and K a probability kernel from E to F with associated
operator

Kf(x) = /FK()(7 dy) f(x,y).

Theorem (Rogers & Pitman 1981)

If there exists a generator G of a Markov process in E such that for each
f: E x F— Rinthe domain of G,

KG(F)(x) = GK(f)(x) x €E,

then
1. P(Yo € dy|Xo) = K(Xo, dy) a.s. implies that foreach t > 0,

P(Y: € dy|(Xs,0 < s <)) =K(X;,dy) a.s.

2. (X, t > 0) is a Markov process with generator G.

43



The weight measure

Levels

backward time

Weight = 1+ Number of coalescences ‘from below’ since last visit of level 1
= Number of ‘delayed’ lineages (i.e., coal. only when leaving level 1)

44



Intertwining (1)

Wi (€) = weight of level £ = number of ‘delayed’ lineages at level ¢

N¢ := W¢(N) = number of ‘delayed’ lineages.

Theorem
(Ng; t > 0)is a b, coalescent process and conditional on (Ng; 0 < 's < t),

Nt
We=">"d,
=1

where the G;’s are i.i.d. Geom(«) random variables.

45



Intertwining (2)

W:(¢) = weight of level £ = number of ‘delayed’ lineages at level £
B¢(w) = number of levels with weight w.

Theorem

(Bt; t > 0) is a Markov process and conditional on (Bs; 0 < s < t),

Bt (w)

=22 bn

w>1 =1

where the Y,,;’s are independent Geom(a”) random variables, conditioned
to be pairwise distinct.

46



Convergence to the Kingman coalescent

Recalla =1—d/cand k = (A — p)/c = abundance of youngest species.

Theorem

As v — 1, the process (Bt/1—ay; t > 0) converges (fdd) to Z:6,, where
> (Z;;t > 0)is a pure-death process with death rate Cn(n — 1) /2
» C = (1— pu/N)k (replacement rate).

47



MCMC inference (1) : Caterpillar tree

o
posterior density

T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0
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MCMC inference (2) : Very imbalanced tree
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MCMC inference (3) : Balanced tree
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Conclusions

» One-parameter model of phylogeny based on a non-neutral,
individual-based model of evolution see also Chisholm & O’Dwyer (2014)

» Relaxing neutrality fails to reproduce universal pattern
» Sowhy s = —-17

» Jnumerical methods for likelihood computation for general
diversification processes

» But all mathematical methods known only work for 5 = 0 trees

51



(Bininda et

(Near et
al. 2013)

(Renner & Schaefer 2010)
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SMILE : an interdisciplinary group in Paris

mc

SORBONNE

Slochast c Models for the Thference of Lafe Evolotion

SMILE = Stochastic Models for the Inference of Life Evolution
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Other lineage-based models of macro-evolution

» Diversity-dependent diversification (Etienne et al Proc 8 2012)

» Trait-dependent diversification : BiSSE, QuaSSE, GeoSSE... (Maddison et
al Syst Biol 2007, FitzJohn MEE 2012...)

But pb with false positives...

» Reviews...

Ricklefs TREE (2007)

Pyron & Burbrink TREE (2013)
Stadler JEB (2013)

Morlon Eco Lett (2014)

vVYyVvYy
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Alternative Answers to Q2

> Phylogenetic reconstruction artifact ? (Huelsenbeck & Kirkpatrick Evolution 1996)

> Protracted/age-dependent speciation ? (Rosindell et al Eco Lett 2010, Hagen et al
Syst Biol 2015)

» Neutral Biodiversity Theory ? (yabot & Chave Eco Lett 2009, Davies et al Evolution 2012,
Manceau, Lambert & Morlon Eco Lett 2015)
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