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Laboratoire de Mathématiques Jean Leray, Nantes

Equipe Serpico, Inria Rennes

Joint works with Christophe Biscio, Jesper Møller

and Ege Rubak (Aalborg University, Denmark).



Introduction Definition Stationary models Approximation Inference Conclusion

1 Introduction

2 Definition, existence and basic properties

3 Parametric stationary models

4 Approximation of the eigen expansion

5 Inference : methodology

6 Conclusion and references



Introduction Definition Stationary models Approximation Inference Conclusion

In short

� DPPs are general models for random processes with
negative dependencies.

� Their general definition has been introduced by O. Macchi
in 1975 to model fermions (i.e. particles in repulsion)

� DPPs arise in many examples of Probability theory (much
before 1975)

� They have been used for statistical purposes more recently
(for about 5 years).
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Example 1: the ”descent subsequence”

Aim : sample points with negative dependence from a regular
grid of N points.

1 Draw N + 1 random numbers from {0, . . . , 9}
2 Keep those points where there is a ”descent”
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This is a DPP!
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With N = 100.

From the ”descent subsequence”
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From an independent sampling
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Example 2: the Ginibre DPP

Let M be an n× n matrix with iid complex Gaussian entries.
Then the n eigenvalues of M are

� ”mainly” concentrated in the complex disk with radius
√
n

� distributed as a DPP on the complex plane

Left : Ginibre DPP (n = 100). Right : 100 iid points in the disk.
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Example 3: spanning tree

Aim : sample edges (with negative dependence) from a graph
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Example 3: spanning tree

Aim : sample edges (with negative dependence) from a graph

Random spanning tree

”tree” = any 2 vertices are connected by exactly one path
”spanning” = all vertices are connected

”random” = uniform over all possible spanning trees
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The repartition of the edges on the graph is a DPP!
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Left: spanning tree. Right: independent sampling of the edges
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Why DPPs may be of interest for statisticians?

� Random matrices naturally arise in Statistics

� In Machine Learning : for instance, by imposing diversity
(through a prior with negative dependencies) in the categories of
an unsupervised classification problem.

� In surveys or random designs : negative dependencies in the
sampling may reduce the variance of an estimate (ex : Monte
Carlo approximation of the integral of a smooth function)

� Some real-data naturally involve negative dependencies:
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Why DPPs may be of interest for statisticians?

� Random matrices naturally arise in Statistics

� In Machine Learning : for instance, by imposing diversity
(through a prior with negative dependencies) in the categories of
an unsupervised classification problem.

� In surveys or random designs : negative dependencies in the
sampling may reduce the variance of an estimate (ex : Monte
Carlo approximation of the integral of a smooth function)

� Some real-data naturally involve negative dependencies:
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Why DPPs may be of interest for statisticians?

� Random matrices naturally arise in Statistics

� In Machine Learning : for instance, by imposing diversity
(through a prior with negative dependencies) in the categories of
an unsupervised classification problem.

� In surveys or random designs : negative dependencies in the
sampling may reduce the variance of an estimate (ex : Monte
Carlo approximation of the integral of a smooth function)

� Some real-data naturally involve negative dependencies:
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Why DPPs may be of interest for statisticians?

� Random matrices naturally arise in Statistics

� In Machine Learning : for instance, by imposing diversity
(through a prior with negative dependencies) in the categories of
an unsupervised classification problem.

� In surveys or random designs : negative dependencies in the
sampling may reduce the variance of an estimate (ex : Monte
Carlo approximation of the integral of a smooth function)

� Some real-data naturally involve negative dependencies:
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Introduction Definition Stationary models Approximation Inference Conclusion

Gibbs point processes vs DPPs (on Rd)

Gibbs point processes: The usual class when modelling
repulsiveness on Rd (e.g. Strauss model).

In general:

� moments are not expressible in closed form;

� likelihoods involve intractable normalizing constants;

� elaborate McMC methods are needed for simulations and
approximate likelihood inference;

� for infinite Gibbs point processes defined on Rd, ‘things’
become rather complicated (existence and uniqueness)
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Gibbs point processes vs DPPs (on Rd)

DPPs possess a number of appealing properties:

(a) simple conditions for existence;

(b) all orders of moments are known;

(c) the density of the DPP restricted to any compact set is
expressible on closed form;

(d) the DPP on any compact set can easily be simulated;

(e) parametric models are available, and inference can be done
by MLEs or using the moments.
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Definition of a DPP on {1, . . . , N}

A point process on {1, . . . , N} is a probability measure on the set of
all subsets of {1, . . . , N}.

Let K be a N ×N matrix.

Definition

X is a DPP on {1, . . . , N} with kernel matrix K if for any subset A of
{1, . . . , N}

P (A ⊂ X) = detKA

where KA = [Kij ]i,j∈A.

Interpretation: for i, j ∈ {1, . . . , N},
Kii = P (i ∈ X)
Kij ≈ measure of similarity between i and j. If K is symmetric

P (i, j ∈ X) =

∣∣∣∣ Kii Kij

Kji Kjj

∣∣∣∣ = P (i ∈ X)P (j ∈ X)−K2
ij
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Definition of a DPP on Rd

In the following, we focus on DPPs on the continuous space Rd

Notation :

� X : spatial point process on Rd

� For any borel set B ⊆ Rd, XB = X ∩B.

� For n > 0, ρ(n) is the n’th order product density function of X.
Intuitively,

ρ(n)(x1, . . . , xn) dx1 · · · dxn
is the probability that for each i = 1, . . . , n,
X has a point in a region around xi of volume dxi.

In particular ρ = ρ(1) is the intensity function.
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Definition of a DPP on Rd

Let C be a function from Rd × Rd → C.
Denote [C](x1, . . . , xn) the n× n matrix with entries C(xi, xj).

Ex : [C](x1) = C(x1, x1) [C](x1, x2) =

(
C(x1, x1) C(x1, x2)
C(x2, x1) C(x2, x2)

)
.

Definition

X is a determinantal point process with kernel C, denoted
X ∼ DPP(C), if its product density functions satisfy

ρ(n)(x1, . . . , xn) = det[C](x1, . . . , xn), n = 1, 2, . . .

Basic example : The Poisson point process with intensity ρ(x) is the
special case where C(x, x) = ρ(x) and C(x, y) = 0 if x 6= y.
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First properties (if X ∼ DPP (C) exists)

� The intensity of X is ρ(x) = C(x, x).

� The pair correlation function is

g(x, y) :=
ρ(2)(x, y)

ρ(x)ρ(y)
=

det[C](x, y)

C(x, x)C(y, y)
= 1− C(x, y)C(y, x)

C(x, x)C(y, y)

� Thus g ≤ 1 (i.e. repulsiveness) if C is Hermitian.

� If X ∼ DPP(C), then XB ∼ DPP(CB)

� Any smooth transformation or independent thinning of a DPP is
still a DPP with explicit given kernel.

� Given a kernel C, there exists at most one DPP(C).
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Existence

C must be non-negative definite. Henceforth assume

(C1) C is a continuous complex covariance function.

By Mercer’s theorem, for any compact set S ⊂ Rd, C restricted
to S × S, denoted CS , has a spectral representation,

CS(x, y) =
∞∑
k=1

λSkφ
S
k (x)φSk (y), (x, y) ∈ S × S,

where λSk ≥ 0 and
∫
S φ

S
k (x)φSl (x) dx = 1{k=l}.

Theorem (Macchi, 1975)

Under (C1), existence of DPP(C) is equivalent to :

λSk ≤ 1 for all compact S ⊂ Rd and all k.
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Density on a compact set S

Let X ∼ DPP(C) and S ⊂ Rd be any compact set.

Recall that CS(x, y) =
∑∞

k=1 λ
S
kφ

S
k (x)φSk (y).

Theorem (Macchi (1975))

If λSk < 1 ∀k, then XS � Poisson(S, 1), with density

f({x1, . . . , xn}) = exp(|S| −D) det[C̃](x1, . . . , xn),

where D = −
∑∞

k=1 log(1− λSk ) and C̃ : S × S → C is given by

C̃(x, y) =

∞∑
k=1

λSk
1− λSk

φSk (x)φSk (y)



Introduction Definition Stationary models Approximation Inference Conclusion

Simulation

Let X ∼ DPP(C).

We want to simulate XS for S ⊂ Rd compact.

Recall that XS ∼ DPP(CS) with CS(x, y) =
∑∞

k=1 λ
S
kφ

S
k (x)φSk (y).

Theorem (Hough et al. (2006))

For k ∈ N, let Bk be independent Bernoulli r.v. with mean λSk .
Define

K(x, y) =

∞∑
k=1

Bkφ
S
k (x)φSk (y), (x, y) ∈ S × S.

Then DPP(CS)
d
= DPP(K).
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So simulating XS is equivalent to simulate DPP(K) with

K(x, y) =

∞∑
k=1

Bkφ
S
k (x)φSk (y), (x, y) ∈ S × S.

1 Simulate M := sup{k ≥ 0 : Bk 6= 0} (by the inversion
method).

2 Given M = m, generate B1, . . . , Bm−1
3 simulate DPP(K) given B1, . . . , BM and M = m.

The kernel K becomes w.l.o.g.

K(x, y) =
n∑
k=1

φSk (x)φSk (y)

and DPP(K) is a determinantal projection process.
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Simulation of a determinantal projection process:

K(x, y) =

n∑
k=1

φSk (x)φSk (y) = v(y)∗v(x), v(x) = (φS1 (x), . . . , φSn(x))T .

DPP(K) has a.s. n points (X1, . . . , Xn) that can be generated by the
following Gram-Schmidt procedure

sample Xn from the density pn(x) = ‖v(x)‖2/n;
set e1 = v(Xn)/‖v(Xn)‖;
for i = (n− 1) to 1 do

sample Xi from the density (given Xi+1, . . . , Xn) :

pi(x) =
1

i

‖v(x)‖2 −
n−i∑
j=1

|e∗jv(x)|2
 , x ∈ S

set wi = v(Xi)−
∑n−i
j=1

(
e∗jv(Xi)

)
ej , en−i+1 = wi/‖wi‖
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Summary

Therefore, given a kernel C :

� condition for existence of DPP(C) are known*

� all moments of DPP(C) are explicitly known

� the density of DPP(C) on any compact set is known*

� DPP(C) can be easily and quickly simulated on any
compact set*

* if the spectral representation of CS is known on any S (see
later for an approximation).
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Stationary models

Consider a stationary kernel : C(x, y) = C0(x− y), x, y ∈ Rd.

Recall (C1): C0 is a continuous covariance function.

Moreover, if C0 ∈ L2(Rd) we can define its Fourier transform

ϕ(x) =

∫
C0(t)e

−2πix·t dt, x ∈ Rd.

Theorem

Under (C1), if C0 ∈ L2(Rd), then existence of DPP(C0) is
equivalent to

ϕ ≤ 1.

To construct parametric families of DPP :
Consider parametric families of C0 and rescale so that ϕ ≤ 1.

→ This will induce restriction on the parameter space.
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Several parametric families of covariance functions are available, with
closed form expressions for their Fourier transform.

� For d = 2, the circular covariance function with range α is given by

C0(x) = ρ
2

π

(
arccos(‖x‖/α)− ‖x‖/α

√
1− (‖x‖/α)2

)
1‖x‖<α.

DPP(C0) exists iff ϕ ≤ 1⇔ ρα2 ≤ 4/π.

⇒ Tradeoff between the intensity ρ and the range of repulsion α.

� Whittle-Matérn (includes Exponential and Gaussian) :

C0(x) = ρ
21−ν

Γ(ν)
‖x/α‖νKν(‖x/α‖), x ∈ Rd,

DPP(C0) exists iff ρ ≤ Γ(ν)
Γ(ν+d/2)(2

√
πα)d

� Generalized Cauchy

C0(x) =
ρ

(1 + ‖x/α‖2)
ν+d/2

, x ∈ Rd.

DPP(C0) exists iff ρ ≤ Γ(ν+d/2)
Γ(ν)(

√
πα)d
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Pair correlation functions of DPP(C0) for previous models when ρ = 1
and α = αmax(ν):

In blue : C0 is the circular covariance function.

In red : C0 is Whittle-Matérn, for different values of ν

In green : C0 is generalized Cauchy, for different values of ν
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� Are the previous parametric families ”rich enough”?

� How repulsive a stationary DPP can be?

- Less repulsive DPP = Poisson Point Process.

- What is the most repulsive DPP?

� We introduce criteria of repulsiveness based on the pair
correlation function g.
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How repulsive a stationary DPP can be?

Criteria of repulsiveness based on the pair correlation function.
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Attractive zone

Repulsive zone

Let X and Y be two DPPs with the same intensity ρ and pcf gX , gY .

Definition

• X is globally more repulsive than Y if ”gX has a larger blue zone”,
i.e.

∫
(1− gX) ≥

∫
(1− gY ).

• X is locally more repulsive than Y if ”gX is more flat near 0”,
i.e. gX(0) = gY (0) = 0, ∇gX(0) = ∇gY (0) = 0 and ∆gX(0) ≤ ∆gY (0).

Note that for a hardcore point process: g(0) = ∇g(0) = ∆g(0) = 0.
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Let Jν be the Bessel function of the first kind with order ν.

Proposition

There exists a unique DPP that is both the most globally and the most
locally repulsive DPP with intensity ρ. Its kernel in dimension d = 2
is given by:

C0(x) =
√
ρ
J1(2
√
πρ||x||)√
π||x|| and ϕ(x) = 1||x||2≤ρπ−1
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New parametric families of kernels

• Laguerre-Gauss family, for n ∈ N and 0 < α ≤ αmax(d, ρ, n)

C0(x) ∝ L
d
2
n−1

(
1

n

∥∥∥x
α

∥∥∥2
)
e−

1
n‖

x
α‖

2

ϕ(x) ∝ e−n(πα‖x‖)2
n−1∑
k=0

(π
√
n‖αx‖)2k

k!

−→ covers all possible degrees of repulsiveness.
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• Generalized-Sinc family, for σ ≥ 0, 0 < α ≤ αmax(d, ρ, σ)

C0(x) ∝
Jσ+d

2

(
2‖ xα‖

√
σ+d

2

)
(

2‖ xα‖
√

σ+d
2

)σ+d
2

ϕ(x) ∝
(

1− 2(π‖αx‖)2

σ + d

)σ
2

+

−→ covers all possible degrees of repulsiveness.

−→ ϕ is compactly supported.
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Approximation of stationary DPP’s models

Consider a stationary kernel C0 and X ∼ DPP(C0).
• The simulation and the density of XS requires the expansion

CS(x, y) = C0(y − x) =

∞∑
k=1

λSkφ
S
k (x)φSk (y), (x, y) ∈ S × S,

but in general λSk and φSk are not expressible on closed form.

• Consider w.l.g. the unit box S = [− 1
2 ,

1
2 ]d and the Fourier expansion

C0(y − x) =
∑
k∈Zd

cke2πik·(y−x), y − x ∈ S.

The Fourier coefficients are

ck =

∫
S

C0(u)e−2πik·u du ≈
∫
Rd
C0(u)e−2πik·u du = ϕ(k)

which is a good approximation if C0(u) ≈ 0 for |u| > 1
2 .

• Example: For the circular covariance, this is true whenever ρ|S| > 5.
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Approximation of stationary models

So, DPP(C0) on S can be approximated by DPP(Capp,0) with

Capp,0(y − x) =
∑
k∈Zd

ϕ(k)e2πi(y−x)·k, x, y ∈ S,

where ϕ is the Fourier transform of C0.

This kernel approximation allows us

� to simulate DPP(C0) on S, by simulating DPP(Capp,0)

� to compute the (approximated) density of DPP(C0) on S.

Turns out to be a very good approximation in most cases.
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Exemples of approximations

− Solid lines : theoretical pair correlation function

◦ Circles : pair correlation from the approximated kernel
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Consider a stationary and isotropic parametric DPP(C0), with

C0(x− y) = ρRθ(‖x− y‖),

where Rθ(0) = 1 and θ is some parameter.

For this model:

� ρ = intensity.

� Pair correlation function:

g(x, y) = 1−Rθ(‖x− y‖)2.
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Parameter estimation

In
C0(x− y) = ρRθ(‖x− y‖)

we can estimate (ρ, θ)

� by MLE using the kernel approximation for the likelihood

� or using the moments, for instance :

ρ̂ = #{obs. points}/[area of obs. window]

θ̂ = argminθ

∫ rmax

rmin

∣∣∣√ĝ(r)−
√
gθ(r)

∣∣∣2 dr
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Conclusion

• DPPs provide flexible (parametric) models of repulsive point
processes and possess appealing properties:

� Easily and rather quickly simulated

� Closed form expressions for all moments.

� Closed form expression for the density on any bounded set.

� Parametric models are available

� Inference is feasible, including likelihood inference.

� More: Laplace transform, mixing properties, concentration
inequalities, asymptotic inference,...

• Parametric models, inference methods and so on are available
in R in the package spatstat.
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Conclusion

Some open questions :

� Can we simulate DPP(C) without the spectral
representation of C?

� Theoretical properties for the MLE?

� Theory for inference in the non-homogeneous case

� Semi or non-parametric inference

� ...

THANK YOU
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