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Marked configuration

R
d the euclidian space.

M ⊂ R compact, called space of mark, and Q a probability law
on M.

Definition (Space of marked configuration)

Let ϕ ⊂ R
d ×M and Π : Rd ×M −→ R

d the projection.
We say that ϕ is a marked configuration if Π(ϕ) is locally finite
in R

d and the restriction of Π to ϕ is injective. We note by CM

the set of marked configuration.
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The Model

Definition (graph function)

Let C
′

⊂ CM, we call graph function or building graph

function, each function :

h : C
′

× (Rd ×M) −→ R
d ×M such that :

(i) ∀ϕ ∈ C
′

, ∀x ∈ ϕ ; h(ϕ, x) ∈ ϕ.
(ii) ∀ϕ ∈ C

′

, ∀−→v ∈ R
d, we have ϕ+−→v ∈ C

′

and
h(ϕ +−→v , x+−→v ) = h(ϕ, x) +−→v .

A given couple (C
′

, h) is called random graph model if the
realisations of a stationary and independently marked Poisson
point process live almost surely in C

′

.
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Graph function on the example 1

x

h(ϕ, x)
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Cluster

Definition

Let ϕ ∈ C
′

and x ∈ ϕ, we define the forward of x in ϕ :

For(x, ϕ) := {x, h(ϕ, x), h(ϕ, h(ϕ, x))...}.

We also define the backward of x in ϕ :

Back(x, ϕ) = {y ∈ ϕ : x ∈ For(y, ϕ)}.

To finish, we introduce C(x, ϕ) = For(x, ϕ) ∪Back(x, ϕ).
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Cycle Assumption

Definition

Let ϕ ∈ C
′

and k ∈ N, we say that ϕ is a k-cycling

configuration if :
∀x ∈ ϕ, ∃Ax ⊂ (Rd ×M)k an open ball such that :
∀(x1, ..., xk) ∈ Ax, then :
(i) For(x, ϕ ∪ {x1, ..., xk}) = {x, x1, ...xk}.
(ii) #Back(x, ϕ ∪ {x1, ..., xk}) ≥ #Back(x, ϕ)

Cycle assumption There exists k ∈ N \ {0} such that :

P[X is a k − cycling configuration] = 1
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Cycle assumption for the line segment model
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Shield assumption

Shield Assumption

There exists α ∈ N \ {0} and (Em)m≥1 a sequence of events,
such that :
(i) ∀m ≥ 1, Em is B(0, αm) measurable.
(ii) P[Em] −→

m→+∞
1.

(iii)∀V ⊂ Z
d such that Z

d \ V contains at least two connected
components A1 and A2 such that :
∀i ∈ {1, 2}, Ai := (Ai ⊕ [−1

2 , 12 ]
d) \ (V ⊕ [−α,α]d) 6= ∅.

then, for m sufficiently large :
∀ϕ,ϕ

′

∈ C
′

such that : ∀z ∈ V, ϕ−mz ∈ Em (we say that z is a
m-shield vertex for ϕ), then :

∀x ∈ ϕmA1
, h(ϕ, x) = h(ϕmAc

2
∪ ϕ

′

mA2
, x).

∀x ∈ ϕmA2
, h(ϕ, x) = h(ϕmAc

1
∪ ϕ

′

mA1
, x).
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Shield assumption for the line segment model
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Theorem

Let (C
′

, h) a random graph model relatively to a given Poisson
point process X.

Theorem

Let (C
′

, h,X) a random graph model satisfying the two

assumptions, then :

P[∀x ∈ X,#C(x,X) < ∞] = 1
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No percolation backward

In all the rest of the presentation, (C
′

, h,X) is a fixed random
graph model satisfying our two assumptions.
Using the mass transport principle, we have :

Lemma

If we suppose that P[∀x ∈ X, #For(x,X) < ∞] = 1, then

P[∀x ∈ X, #Back(x,X) < ∞] = 1

Now, we have to proof that P[∀x ∈ X, #For(x,X) < ∞] = 1.
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Looping point

Definition (Looping point)

Let 0 < r < R < ∞, K ∈ N \ {0}, ϕ ∈ C
′

and x ∈ ϕ. We say
that x is a Looping point of ϕ if :
(i) #ϕB(x,R) ≤ K.
(ii) For(x, ϕ) loop inside of the ball B(x, r).

Using the mass transport principle, we have :

Lemma

For all choices of parameters (r,R,K) in the Looping point

definition, we have :

E[#Back(Θ,XΘ)1{Θ is a Looping point of XΘ}] < ∞

Θ is a typical point of Rd ×M and we use the notation XΘ for
X ∪Θ.
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A-Looping point

Definition

Let 0 < r < R, K ∈ N \ {0}, A ⊂ (B(0, r)×M)k an open ball,
ϕ ∈ C

′

and x ∈ ϕ. We say that x is a A-Looping point of ϕ if :
(i) #ϕB(x,R) ≤ K.
(ii) ∀(x1, ..., xk) ∈ Ax, then :

For(x, ϕ ∪ {x1, ..., xk}) is cycling in B(x, r).
#Back(x, ϕ ∪ {x1, ..., xk}) ≥ #Back(x, ϕ)

Where the subset Ax is obtained using a translation operator on
the subset A.
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Connection between Looping point and A-Looping point

Lemma

If there exist parameters (r,R,K,A) such that,

E[#Back(Θ,XΘ1{Θ is (r,R,K,A)−looping for XΘ}] = ∞.

Then,

E[#Back(Θ,XΘ)1{Θ is (r,R,K+k)−looping for XΘ}] = ∞
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Proof conclusion

Proposition

Let (C
′

, h) a random graph model satisfying k-cycle

assumption and shield assumption. If we suppose that :

P[{#For(Θ,XΘ) = ∞}] > 0

then, there exists parameters (r,R,K,A) such that :

E[#Back(Θ,XΘ)1{Θ is a (r,R,K,A)−looping point of XΘ}] = ∞
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Thank you for your attention
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