< ロト (母) (ヨ) (コ) (コ) (1)

1/23

Absence of percolation in a family of germes-grains model

Simon Le Stum, Joint work with D.Coupier and D.Dereudre

Journées MAS, Grenoble, august 29-th 2016

2 Assumptions and theorem

Marked configuration

\mathbb{R}^d the euclidian space.

 $\mathbb{M}\subset\mathbb{R}$ compact, called space of mark, and $\mathcal Q$ a probability law on $\mathbb{M}.$

Definition (Space of marked configuration)

Let $\varphi \subset \mathbb{R}^d \times \mathbb{M}$ and $\Pi : \mathbb{R}^d \times \mathbb{M} \longrightarrow \mathbb{R}^d$ the projection. We say that φ is a marked configuration if $\Pi(\varphi)$ is locally finite in \mathbb{R}^d and the restriction of Π to φ is injective. We note by $\mathcal{C}^{\mathbb{M}}$ the set of marked configuration.

Example 1

The Model

Definition (graph function)

Let $C' \subset C^{\mathbb{M}}$, we call graph function or building graph function, each function :

$$h: \mathcal{C}' \times (\mathbb{R}^d \times \mathbb{M}) \longrightarrow \mathbb{R}^d \times \mathbb{M}$$
 such that :

(i)
$$\forall \varphi \in \mathcal{C}', \forall x \in \varphi; h(\varphi, x) \in \varphi.$$

(ii) $\forall \varphi \in \mathcal{C}', \forall \overrightarrow{v} \in \mathbb{R}^d$, we have $\varphi + \overrightarrow{v} \in \mathcal{C}'$ and $h(\varphi + \overrightarrow{v}, x + \overrightarrow{v}) = h(\varphi, x) + \overrightarrow{v}.$

A given couple (\mathcal{C}', h) is called **random graph model** if the realisations of a stationary and independently marked Poisson point process live almost surely in \mathcal{C}' .

Introductive model and definitions

Assumptions and theorem Main steps of the proof

Dynamic on the example 1

Introductive model and definitions

Assumptions and theorem Main steps of the proof

Graph function on the example 1

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ 8 / 23 Introductive model and definitions

Assumptions and theorem

Main steps of the proof

Graph function on the example 1

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○ 9 / 23

Cluster

Definition

Let $\varphi \in \mathcal{C}'$ and $x \in \varphi$, we define the forward of x in φ :

$$For(x,\varphi) := \{x, h(\varphi, x), h(\varphi, h(\varphi, x))...\}.$$

We also define the backward of x in φ :

$$Back(x,\varphi) = \{y \in \varphi : x \in For(y,\varphi)\}.$$

To finish, we introduce $C(x, \varphi) = For(x, \varphi) \cup Back(x, \varphi)$.

10/23

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

11/23

・ロト ・四ト ・ヨト ・ヨト ・ヨー

12/23

Cycle Assumption

Definition

Let $\varphi \in \mathcal{C}'$ and $k \in \mathbb{N}$, we say that φ is a **k-cycling** configuration if : $\forall x \in \varphi, \exists A_x \subset (\mathbb{R}^d \times \mathbb{M})^k$ an open ball such that : $\forall (x_1, ..., x_k) \in A_x$, then : (i) $For(x, \varphi \cup \{x_1, ..., x_k\}) = \{x, x_1, ... x_k\}$. (ii) $\#Back(x, \varphi \cup \{x_1, ..., x_k\}) \geq \#Back(x, \varphi)$

Cycle assumption There exists $k \in \mathbb{N} \setminus \{0\}$ such that :

 $\mathbb{P}[\mathbb{X} \text{ is a } k - cycling \ configuration}] = 1$

Cycle assumption for the line segment model

Shield assumption

Shield Assumption

There exists $\alpha \in \mathbb{N} \setminus \{0\}$ and $(E_m)_{m \ge 1}$ a sequence of events, such that : (i) $\forall m \geq 1, E_m$ is $B(0, \alpha m)$ measurable. (ii) $\mathbb{P}[E_m] \xrightarrow{m \to +\infty} 1.$ (iii) $\forall V \subset \mathbb{Z}^d$ such that $\mathbb{Z}^d \setminus V$ contains at least two connected components A_1 and A_2 such that : $\forall i \in \{1, 2\}, \ \mathcal{A}_i := (A_i \oplus [\frac{-1}{2}, \frac{1}{2}]^d) \setminus (V \oplus [-\alpha, \alpha]^d) \neq \emptyset.$ then, for m sufficiently large : $\forall \varphi, \varphi' \in \mathcal{C}'$ such that $: \forall z \in V, \ \varphi - mz \in E_m$ (we say that z is a *m*-shield vertex for φ), then :

$$\forall x \in \varphi_{m\mathcal{A}_{1}}, \ h(\varphi, x) = h(\varphi_{m\mathcal{A}_{2}^{c}} \cup \varphi'_{m\mathcal{A}_{2}}, x). \\ \forall x \in \varphi_{m\mathcal{A}_{2}}, \ h(\varphi, x) = h(\varphi_{m\mathcal{A}_{1}^{c}} \cup \varphi'_{m\mathcal{A}_{1}}, x).$$

Shield assumption for the line segment model

・ロト ・御 ト ・ 国 ト ・ 国 ト

16/23

Theorem

Let (\mathcal{C}', h) a random graph model relatively to a given Poisson point process X.

Theorem

Let $(\mathcal{C}^{'},h,\mathbb{X})$ a random graph model satisfying the two assumptions, then :

 $\mathbb{P}[\forall x \in \mathbb{X}, \#C(x, \mathbb{X}) < \infty] = 1$

3 Main steps of the proof

No percolation backward

In all the rest of the presentation, $(\mathcal{C}', h, \mathbb{X})$ is a fixed random graph model satisfying our two assumptions. Using the mass transport principle, we have :

Lemma

If we suppose that
$$\mathbb{P}[\forall x \in \mathbb{X}, \ \#For(x,\mathbb{X}) < \infty] = 1$$
, then
 $\mathbb{P}[\forall x \in \mathbb{X}, \ \#Back(x,\mathbb{X}) < \infty] = 1$

Now, we have to proof that $\mathbb{P}[\forall x \in \mathbb{X}, \#For(x, \mathbb{X}) < \infty] = 1.$

Looping point

Definition (Looping point) Let $0 < r < R < \infty$, $K \in \mathbb{N} \setminus \{0\}$, $\varphi \in \mathcal{C}'$ and $x \in \varphi$. We say that x is a **Looping point** of φ if : (i) $\#\varphi_{B(x,R)} \leq K$. (ii) $For(x,\varphi)$ loop inside of the ball B(x,r).

Using the mass transport principle, we have :

Lemma

For all choices of parameters (r, R, K) in the Looping point definition, we have :

 $\mathbb{E}[\#Back(\Theta, \mathbb{X}_{\Theta})\mathbb{1}_{\{\Theta \text{ is a Looping point of } \mathbb{X}_{\Theta}\}}] < \infty$

 Θ is a typical point of $\mathbb{R}^d \times \mathbb{M}$ and we use the notation \mathbb{X}_{Θ} for $\mathbb{X} \cup \Theta$.

A-Looping point

Definition

Let $0 < r < R, K \in \mathbb{N} \setminus \{0\}, A \subset (B(0, r) \times \mathbb{M})^k$ an open ball, $\varphi \in \mathcal{C}'$ and $x \in \varphi$. We say that x is a A-Looping point of φ if : (i) $\#\varphi_{B(x,R)} \leq K$. (ii) $\forall (x_1, ..., x_k) \in A_x$, then : $For(x, \varphi \cup \{x_1, ..., x_k\})$ is cycling in B(x, r). $\#Back(x, \varphi \cup \{x_1, ..., x_k\}) \geq \#Back(x, \varphi)$

Where the subset A_x is obtained using a translation operator on the subset A.

・ロト ・ 理ト ・ ヨト ・ ヨト …

21/23

Connection between Looping point and A-Looping point

Lemma

If there exist parameters (r, R, K, A) such that,

$$\mathbb{E}[\#Back(\Theta, \mathbb{X}_{\Theta}\mathbb{1}_{\{\Theta \text{ is } (r, R, K, A) - \textit{looping for } \mathbb{X}_{\Theta}\}}] = \infty$$

Then,

$$\mathbb{E}[\#Back(\Theta, \mathbb{X}_{\Theta})\mathbb{1}_{\{\Theta \text{ is } (r, R, K+k)-\textit{looping for } \mathbb{X}_{\Theta}\}}] = \infty$$

Proof conclusion

Proposition

Let (\mathcal{C}', h) a random graph model satisfying k-cycle assumption and shield assumption. If we suppose that :

$$\mathbb{P}[\{\#For(\Theta, \mathbb{X}_{\Theta}) = \infty\}] > 0$$

then, there exists parameters (r, R, K, A) such that :

 $\mathbb{E}[\#Back(\Theta, \mathbb{X}_{\Theta})\mathbb{1}_{\{\Theta \text{ is a } (r, R, K, A) - looping \text{ point of } \mathbb{X}_{\Theta}\}}] = \infty$

Thank you for your attention