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Marked configuration

R? the euclidian space.
M C R compact, called space of mark, and Q a probability law
on M.

Definition (Space of marked configuration)

Let ¢ C R x M and IT: R¢ x M — R¢ the projection.

We say that ¢ is a marked configuration if II(¢p) is locally finite
in R? and the restriction of II to ¢ is injective. We note by CM
the set of marked configuration.
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The Model

Definition (graph function)

Let ¢ c CM, we call graph function or building graph
function, each function :

h:C x (R% x M) — R? x M such that :

(i) Vo €C', Vz € ; h(p,z) € @
(i) Vo € C', VU € RY, we have o+ ¥ € C' and
o+ 0,2+ V) =h(p,z) + .

A given couple (C',h) is called random graph model if the
realisations of a stationary and independently marked Poisson
point process live almost surely in c.
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Graph function on the example 1
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Cluster

Definition

Let ¢ € C and z € ¢, we define the forward of z in ¢ :

For(z,¢) = {z, h(p,x), h(p,h(p,x))...}.

We also define the backward of z in ¢ :

Back(z,p) ={y € p: = € For(y,p)}.

To finish, we introduce C(z, ) = For(z,¢) U Back(z, ¢).
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Cycle Assumption

Definition

Let ¢ € C and k € N, we say that ¢ is a k-cycling
configuration if :

Vx € ¢, 3A,; C (R? x M)¥ an open ball such that :
V(x1,...,x ) € Ay, then :

(i) For(z,pU{z1,....,x}) = {x,21,...21}.

(ii) #Back(z,p U{x1,...,z1}) > #Back(z, @)

Cycle assumption There exists k € N\ {0} such that :

P[X is a k — cycling con figuration] = 1
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Cycle assumption for the line segment model
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Shield assumption

Shield Assumption

There exists @ € N\ {0} and (Ey,)m>1 a sequence of events,

such that :

(i) Vm > 1, E,, is B(0,@m) measurable.

(i) P[E,,] v 1.

(iii)¥V € Z< such that Z¢\ V contains at least two connected
components A; and As such that :

Vie{1,2}, A= (A4 [F D\ (Ve |[—a,a]?) #0.

then, for m sufficiently large :

Vo, €C such that : Vz €V, ¢ —mz € Ep, (we say that z is a
m-shield vertex for ¢), then :

VT € omay, My, x) = h((pmAC U (pmAy ).
VT € Qmays h(@,2) = h(@mas Uy 4, 7).
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Shield assumption for the line segment model
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Theorem

Let (C',h) a random graph model relatively to a given Poisson
point process X.

Theorem

Let (C/, h,X) a random graph model satisfying the two
assumptions, then :

PVz € X, #C(2,X) < 0] =1

16 /23



© Main steps of the proof

DA
17 /23



Introductive model and definitions Assumptions and theorem Main steps of the proof

No percolation backward

In all the rest of the presentation, (C’, h,X) is a fixed random
graph model satisfying our two assumptions.
Using the mass transport principle, we have :

Lemma
If we suppose that PVx € X, #For(z,X) < co] = 1, then

PVz € X, #Back(z,X) < oo] =1

Now, we have to proof that P[Vz € X, #For(z,X) < o] = 1.
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Looping point

Definition (Looping point)

Let 0 <7 < R < o0, KcN\{0}, pcC and z € p. We say
that z is a Looping point of ¢ if :

(i) #¢B@r) < K.

(ii) For(z, ) loop inside of the ball B(x,r).

Using the mass transport principle, we have :

Lemma

For all choices of parameters (r, R, K) in the Looping point
definition, we have :

E[#Back(@,X@)ﬂ{@ is a Looping point of X@}] < 0

© is a typical point of R¢ x M and we use the notation Xg for
XuU®o.
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A-Looping point

Definition
Let 0 <r < R, K € N\ {0}, A C (B(0,r) x M)¥ an open ball,

p e C and z € . We say that z is a A-Looping point of ¢ if :

(i) #¢B@r < K.
(i) V(z1,...,xk) € Ay, then :

For(z,pU{z1,...,x}) is cycling in B(z,r).
#Back(z, o U{x1,...,x1}) > #Back(x, p)

Where the subset A, is obtained using a translation operator on
the subset A.
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Connection between Looping point and A-Looping point

Lemma
If there exist parameters (r, R, K, A) such that,

E[#Back(0,Xelg is (r,R,K,A)—looping for Xo}] = OO
Then,

E[#BGC]Q(@’X@)H{G is (r,R,K+k)—looping for X@}] =
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Proof conclusion

Proposition

Let (C',h) a random graph model satisfying k-cycle
assumption and shield assumption. If we suppose that :

P{#For(0,Xe) =o0}] >0

then, there exists parameters (r, R, K, A) such that :

E[#BaCk(vae)]l{@ is a (r,R,K,A)—looping point of X@}] =00
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Thank you for your attention
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