
Dams management problem
DADP in a nutshell

Numerical experiments

Dual Approximate Dynamic Programming

P. Carpentier and J.-P. Chancelier and V. Leclère 1

ENSTA ParisTech and ENPC ParisTech

1Joint work with J.-C. Alais,
supported by the FMJH Program Gaspard Monge for Optimization.

V. Leclère DADP August 30, 2016 1 / 29



Dams management problem
DADP in a nutshell

Numerical experiments

Lecture outline

1 Dams management problem
Introduction
Hydro valley modeling

2 DADP in a nutshell
Decomposition Methods
Spatial Decomposition
Ideas behind DADP

3 Numerical experiments
Academic examples
More realistic examples

V. Leclère DADP August 30, 2016 2 / 29



Dams management problem
DADP in a nutshell

Numerical experiments
Introduction
Hydro valley modeling

Motivation

Electricity production management for hydro valleys

1 year time horizon:
compute each month
the Bellman functions
(“water values”)
stochastic framework:
rain, market prices
large-scale valley:
5 dams and more

We wish to remain within the scope of Dynamic Programming.
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Mulstistage Stochastic Optimization: an Example

How to manage a chain of
dam producing electricity from
the turbine water to optimize
the gain?

E
[ N∑

i=1

T−1∑
t=0

Li
t( X i

t︸︷︷︸
state

, U i
t︸︷︷︸

control

,Wt+1︸ ︷︷ ︸
noise

)
]

Constraints:
dynamics:
Xt+1 = ft

(
Xt ,Ut ,Wt+1

)
,

nonanticipativity:
Ut � Ft ,
spatial coupling:
Z i+1

t = g i
t
(
X i

t ,U i
t ,W i

t+1
)
.
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Couplings for Stochastic Problems

unit

time

uncertainty

min
∑
ω

∑
i

∑
t
πωLi

t(X i
t ,U

i
t ,Wt+1)

s.t. X i
t+1 = f i

t (X i
t ,U

i
t ,Wt+1)

U i
t � Ft = σ

(
W1, . . . ,Wt

)
∑

i
Θi

t(X i
t ,U

i
t) = 0
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Intuition of Spatial Decomposition

Satisfy a demand
(over T time step)
with N units of production
at minimal cost.
Price decomposition:

the coordinator sets a
sequence of price λt ,
the units send their
production planning
U(i)

t ,
the coordinator
compares total
production and demand
and updates the price,
and so on...

Unit
1

Unit
2

Unit
3

Coordinator
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Primal Problem

min
X ,U

N∑
i=1

E
[ T∑

t=0
Li

t
(
X i

t ,U
i
t ,Wt+1

)
+ K i(X i

T
)]

∀ i , X i
t+1 = f i

t (X i
t ,U

i
t ,Wt+1), X i

0 = x i
0,

∀ i , U i
t ∈ U

ad
t,i , U i

t � Ft ,

N∑
i=1

θi
t(U i

t) = 0

Solvable by DP with state (X1, . . . ,XN) (under noise
independence assumption)
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Primal Problem with Dualized Constraint
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Coupling constraint dualized =⇒ remaining constraints are i by i
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For a given λ, minimum of sum is sum of minima
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Multiplier
Process λ

(k)
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· · ·Solving
subproblem 1

Solving
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N∑
i=1

θi
t
(
U i

t
)

︸ ︷︷ ︸
∆(k)

t

= 0 ?

λ
(k+1)
t = λ

(k)
t + ρ∆(k)

t

θi
t
(
U i ,(k)

t
)

Information Process
Yt+1 = f̃ (Yt ,Wt+1)

Stochastic spatial
decomposition scheme
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Dual approximation as constraint relaxation
The original problem is (abstract form)

min
U ∈U

J(U )

s.t. Θ(U ) = 0
written as

min
U ∈U

max
λ

J(U ) + E
[
〈λ,Θ(U )〉

]
Subsituting λ by E

(
λ
∣∣Y ) gives

min
U ∈U

max
λ

J(U ) + E
[〈
E
(
λ
∣∣Y ),Θ(U )

〉]

equivalent to
min
U ∈U

J(U )

s.t. E
(
Θ(U )

∣∣Y ) = 0
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Three Interpretations of DADP

DADP as an approximation of the optimal multiplier

λt  E
(
λt
∣∣Yt
)
.

DADP as a decision-rule approach in the dual

max
λ

min
U

L
(
λ,U

)
 max

λt�Yt
min

U
L
(
λ,U

)
.

DADP as a constraint relaxation in the primal
n∑

i=1
θi

t
(
U i

t
)

= 0  E
( n∑

i=1
θi

t
(
U i

t
)∣∣∣∣Yt

)
= 0 .
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Theoretical Results

Consistence of the approximation (if we consider a sequence
of approximated problems).
Existence of multiplier of the coupling constraint.
Convergence of the decomposition algorithm for a given
relaxation.
Lower and upper bounds on the original problem.
A posteriori verification allowing for better multiplier update.
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Consistence of the Approximation Scheme

The DADP algorithm solves a relaxation
(
PY
)

of the original
problem

(
P
)

where

n∑
i=1

θi
t
(
U i

t
)

= 0  E
( n∑

i=1
θi

t
(
U i

t
)∣∣∣∣Yt

)
= 0

(
PY
)
.

Question: if we consider a sequence of information processes{
Y (n)}

n∈N, such that the information converges

σ
(
Y (n)

t
)
→ σ

(
W0, · · · ,Wt

)
does the associated sequence

(
UY (n)) of optimal control

converges toward an optimal control of
(
P
)
?
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Epiconvergence of Approximation

Epiconvergence result
Assume that

the cost functions Li
t , dynamic functions f i

t and constraint
functions θi

t are continuous;
the noise variables Wt are essentially bounded;
the constraint sets Uad

i ,t are bounded.
Consider a sequence of information process

{
Y (n)}

n∈N such that
σ
(
Y (n)) Kudo-converges toward F∞. Let U(n) be an εn-optimal

solution to the relaxed problem
(
PY (n)).

Then, every cluster pointa of
{
U(n)}

n∈N is an optimal solution of
the relaxation corresponding to F∞.

afor the topology of the convergence in probability
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Choosing an Information Process Y

Perfect memory: Y i
t =

(
W0, . . . ,Wt

)
.

 equivalent to original problem, no numerical gain.
Minimal information: Y i

t ≡ cste.
 equivalent to replacing a.s. constraint by expected

constraint. Subproblems solved efficiently (state X i
t),

multiplier is deterministic.
Static information:Y i

t = hi
t
(
Wt
)
.

 Subproblems solved efficiently (state X i
t).

Dynamic information: Y i
t+1 = hi

t
(
Y i

t ,Wt+1
)
.

 A number of possibilities. Some ideas:
mimicking the trajectory of the state of another unit (phantom
state),
mimicking the control of other units,
Markov chain representing rougly the general state of the
system.
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Numerical Advantages of a finitely supported Y

Assume that each noise Wt take w values, and the constraint
function take value in R.
Then the multiplier λt of the almost sure constraint at time t
lives in Rwt .
Assume that the information process at time t take y values,
then the multiplier of the relaxed constraint µt lives in Ry .
Moreover each subproblems take “only” roughly y times more
computational effort to solve than the subproblem with local
state X i

t .
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Four case studies

dam 2

dam 1

dam 3

Discretization
T  12
X  41
U  6
W  10

dam 2

dam 1

dam 3

dam 4

dam 2

dam 1

dam 3

dam 4

dam 5

dam 1

dam 2 dam 3

dam 5

dam 6

dam 4
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Results
Valley 3-Dams 4-Dams 5-Dams 6-Dams
DP CPU time 5 ’ 1630 ’ 461200 ’ N.A.
DP value 2482.0 3742.7 4681.6 N.A.
SDDPd value 2474.2 3736.4 4672.2 7014.8
SDDPd CPU time 0 .3 ’ 2 ’ 16 ’ 320 ’
SDDPc value 2479.1 3739.7 4678.5 7016.4
SDDPc CPU time 5 ’ 9 ’ 11 ’ 13 ’

Table: Results obtained by DP, SDDPd and SDDPc

Valley 3-Dams 4-Dams 5-Dams 6-Dams
DADP CPU time 3 ’ 6 ’ 5 ’ 13 ’
DADP value 2401.3 3667.0 4633.7 6816.5
Gap with DP −3.2% −2.0% −1.0% −2.8%

Table: Results obtained by DADP “Expectation”

Results obtained using a 4 cores – 8 threads IntelrCore i7 based computer.
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Two “true” valleys

SoulcemGnioure Izourt

Auzat

Sabart

Discretization
T  12, W  10
realistic grids for U and X

Vicdessos

Chastang

Bort

Mareges

Aigle

Sablier

Dordogne
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Results

Valley Vicdessos Dordogne
SDDPd CPU time 90 ’ 86000 ’
SDDPd value 2232.1 21904.5
SDDPc CPU time 23 ’ 28 ’
SDDPc value 2220.6 22035.2

Table: Results obtained by SDDPd and SDDPc

Valley Vicdessos Dordogne
DADP CPU time 10 ’ 155 ’
DADP value 2237.4 21499.8
Gap with SDDPd +0.2% −1.8%

Table: Results obtained by DADP “Expectation”
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CPU time comparison
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Conclusions and perspectives

Conclusions for DADP
Fast numerical convergence of the method.
Near-optimal results even when using a “crude” relaxation.
Method that can be used for very large valleys

General perspectives
Apply to more complex topologies (smart grids).
Connection with other decomposition methods.
Theoretical study.
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