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Dams management problem q
& p Introduction

Hydro valley modeling

Motivation

Electricity production management for hydro valleys

Vers la source
41885m

@ 1 year time horizon:
compute each month
the Bellman functions

Bertage de La Bousboule

Berage St S

(“water values”)

@ stochastic framework:
rain, market prices

Basrage du Chastang

@ large-scale valley:
5 dams and more

Bezoge de Bergerac
Berrage de Tuileres (e
Borrage d

Bergerac

We wish to remain within the scope of Dynamic Programming.
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@ Dams management problem

@ Hydro valley modeling
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Mulstistage Stochastic Optimization: an Example

How to manage a chain of
dam producing electricity from
the turbine water to optimize
the gain?

V. Leclere DADP August 30, 2016 5/29



Dams "
ms management problem Introduction
Hydro valley modeling

Mulstistage Stochastic Optimization: an Example

How to manage a chain of
dam producing electricity from
the turbine water to optimize

the gain?
N T-1 '

E L(Xx , U, ,wW,
; ;} t( t t t+1)

V. Leclere DADP August 30, 2016 5/29
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Introduction
Hydro valley modeling

Mulstistage Stochastic Optimization: an Example

How to manage a chain of
dam producing electricity from
the turbine water to optimize

the gain?
N T-1 '

E L(Xx , U, ,wW,
ESun o w

state control noise

Constraints:

@ dynamics:

Xt+1 = ff(xt? U, Wt+1)’
@ nonanticipativity:

U, X 7,
@ spatial coupling:

Z; = g (X UL W),
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Decomposition Methods
DADP in a nutshell Spatial omposition
Ideas behind DADP

Couplings for Stochastic Problems

. . . . mind Y Y muLi(X, U}, W, ;)
w i t

time

uncertainty
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DADP in a nutshell Spatial Decomposition
Ideas behind DADP

Couplings for Stochastic Problems: in Time

. — . mmZZwaL’ X’ U’ Wt+1)

st Xy = (X}, U, Wyy)

uncertainty
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Decomposition Methods
DADP in a nutshell Spatial Decomposition
Ideas behind DADP

Couplings for Stochastic Problems: in Uncertainty

mmZZwaL’ (Xi, U], W, )

st. X!

b1 = (X UL W)

U = Fr=0c(W,...,W,)

uncertainty
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Ideas behind DADP

Couplings for Stochastic Problems: in Space

minz Z Z ﬂwLi(X{:, Ué, Wt+1)
w i t

s.t. X:+1 = fti(Xé’ Ué'a Wt+1)

U = Fr=0c(W,....,W,)

3 6HXE Uf) = 0

uncertainty
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Ideas behind DADP

Couplings for Stochastic Problems: a Complex Problem

minz Z Z ﬂwLi(X{:, Ué, Wt+1)
w i t

I
st Xppq =

(X Ui, W, y)
U =Fi=a(W,....,W,)

Z@X%ﬂ

uncertainty
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Decomposition Methods
DADP in a nutshell Spatial Decomposition
Ideas behind DADP

Decompositions for Stochastic Problems: in Time

- » , mmZZZWwL’ (X, U, W,,,)
/ // 1

// " st. X, = (X, UL W, )
[

! / U <Fi=0(W,...,W,)
e // OLACHH

4444 Dynamic Programming

uncertainty Be”man (56)
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Ideas behind DADP

Decompositions for Stochastic Problems: in Uncertainty

mmZZZWwL’ (X;, U, W, )

unit

st X, = (X[, U, W,,,)
U <Fi=0(W,..., w,)
Z@ (X., U
time Progressive Hedging

Rockafellar - Wets (91)
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Ideas behind DADP

Decompositions for Stochastic Problems: in Space

minz Z Z ﬂwLi(X{:, Ué, Wt+1)
w i t

s.t. X:+1 = fti(Xé’ Ué'a Wt+1)

U = Fr=0c(W,....,W,)

3 6HXE Uf) = 0

Dual Approximate
Dynamic Programming

uncertainty
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Ideas behind DADP

© DADP in a nutshell

@ Spatial Decomposition
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DADP in a nutshell

Intuition of Spatial Decomposition

@ Satisfy a demand
(over T time step)
with N units of production
at minimal cost.

@ Price decomposition:
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Decomposition Methods
DADP in a nutshell Spatial Decomposition
Ideas behind DADP

Intuition of Spatial Decomposition

@ Satisfy a demand
(over T time step)
with N units of production
at minimal cost.

@ Price decomposition:

e the coordinator sets a
sequence of price A¢,

e the units send their
production planning
U(i),

e the coordinator
compares total
production and demand
and updates the price,
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Decomposition Methods
DADP in a nutshell Spatial Decomposition
Ideas behind DADP

Application to dam management

DECOMPOSITION

W}
tx
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Decomposition Methods
DADP in a nutshell Spatial Decomposition
Ideas behind DADP

Primal Problem

N
pin > E zu XL Ui W,..) + K/ (X5)

X, i=1

v/, x = RXLUL W), X=X,
Vi, Upeu, U =T,
N

> 6U) =0

i=1

Solvable by DP with state (X;,..., X}) (under noise
independence assumption)
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N
pin > E zu XL Ui W,..) + K/ (X5)

X, i=1

v/, x = RXLUL W), X=X,
Vi, Upeu, U =T,

N . .

ZG;(U;):O ~» X, multiplier

i=1

Solvable by DP with state (X;,..., X) (under noise
independence assumption)
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Decomposition Methods
DADP in a nutshell Spatial Decomposition
Ideas behind DADP

Primal Problem with Dualized Constraint

ZL (Xt Up, W) + (AL 01(U7)) + KT (XT)
Vi, xt = f(X;, U}, W,

Vi, Uleud, U;=F,

min max E

X, U X Z
i=1

)a X(I):X(IJ’

Coupling constraint dualized = remaining constraints are i by i
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Decomposition Methods
DADP in a nutshell Spatial Decomposition
Ideas behind DADP

Dual Problem

N T
max ip > B| Y- LLXL UL Wo) + (s 6L(UD) + K'(X])
’ i=1 t=0

Vi, 1 = £ (Xe Up, Weyy), 0 = X0
Vi, UjeU, U]=F,

Exchange operator min and max to obtain a new problem
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Decomposition Methods
Spatial Decomposition

DADP in a nutshell
Ideas behind DADP

Decomposed Dual Problem

.
DX Up W) + (X 0:(Uy) + K (XT)

N
maxz min E
O A (R VL

X1 = fi (X, U, Wt+1)’ 0 = X0,
. o .
U, ey, U, =F,

For a given A\, minimum of sum is sum of minima
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Decomposition Methods
DADP in a nutshell Spatial Decomposition
Ideas behind DADP

Inner Minimization Problem

min E[ZL' (X[, U, W, ) + (X, 0.(U)) + K'(XF)
X’ UI t= 0

X’H_f(X’ U, w, w,.,), X, = x5,
Uieuid, U =F,

We have N smaller subproblems. Can they be solved by DP?
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Decomposition Methods
DADP in a nutshell Spatial Decomposition
Ideas behind DADP

Inner Minimization Problem

min E[Z LL(X[, U, W, ) + (A, 00(U)) + K'(XF)
X’ UI t= 0
£+1 = f{ (XI Ul t+1) Xé = X6>
Uieu, Ul =F,

No: A is a time-dependent noise ~~ X{ is not a proper state, but
rather (W,,..., W,)
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© DADP in a nutshell

@ |deas behind DADP
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Decomposition Methods
DADP in a nutshell Spatial Decomposition

Ideas behind DADP

Stochastic spatial
decomposition scheme

Multiplier

Process )\(tk)

Solving
subproblem N

Solvin
(k+1) _ 3 (k) (k) g
@D subproblem 1

oi(Up™)
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Ideas behind DADP

Main idea of DADP:
Ay~ Py = E()‘t‘yt)

Multiplier

Process )\(tk)

Solving
subproblem N

(k1) _ (k) (k) Solving
@D subproblem 1

o;(Uf")

S5
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Main idea Of DADP Information Process
At ~ I’Lt = E(At‘yt) Y1 = f(thw

t t+1)

I

Multiplier

Process )\(tk)

Solving
subproblem N

Solving
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Ideas behind DADP

Main idea Of DADP Information Process
At ~ I’Lt = E(At‘yt) Y1 = ?(thw

t t+1)

I

Multiplier

function ,u(tk)(y)

Solving
subproblem N

(k1) _ (k) (k) Solving
@D subproblem 1

o;(Uf")

S5
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DADP in a nutshell

Decomposition Methods
Spatial Decomposition

Ideas behind DADP

Main idea of DADP:
A o =EQA]Y)

Y., = (Y, W

Information Process
t t+1)

I

Multiplier

(k)
t

function p

(v)

V. Leclere

Solvi Solving
ol subproblem N:
subproblem 1: DP on
DP on (X1, Y,) (XM, v)
t? t
i pis(k
oi(up)
N .
S oi(U) =07
i=1
RG

DADP August 30, 2016 12 /29
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Ideas behind DADP

Main idea Of DADP Information Process
At ~ I’Lt = E(At‘yt) Y1 = ?(thw

t H~1)

I

Multiplier

function ,u(tk)(y)

Solving

Solving ;
DP on (X1, Y,) on

(XN, Y,)
0;(@&

(Soicwy

=

Yt:y)ZO?

ab(y)
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Main idea Of DADP Information Process
At ~ I’Lt = E(At‘yt) Y1 = ?(thw

t t+1)

I

Multiplier

function ,u(tk)(y)

- Solving
Solving subproblem N:
u(tk+l)(_) _ H(tk)(') +PA(tk)(') subproblem 1: DP on

DP on (X1, Y,)

0i( Ui‘N

(Soicwy

(X', Y)

=

Yt:y)ZO?

ab(y)
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Decomposition Methods
DADP in a nutshell Spatial Decomposition

Ideas behind DADP

Main idea of DADP: X, ~ pu, := E(X,]Y,)

Multiplier
()

function pu;

Multiplier
Process /\(tk)

Solving L Solving
subproblem 1 subproblem N

Solving " Solving
subproblem 1 subproblem N

o)

Main problems: Advantages:
@ Subproblems not easily @ Subproblems solvable by DP
solvable by DP with state (X!, Y,)
@ A live in a huge space @ 1 live in a smaller space

August 30, 2016 13 /29
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Decomposition Methods
DADP in a nutshell Spatial Decomposition
Ideas behind DADP

Dual approximation as constraint relaxation

The original problem is (abstract form)

HA
s.t. ©U)=0

written as
mnin max J(U)+E[(X©(U))]

Subsituting A by E(A|Y) gives

LTEIer{ max J(U)+E |:<E(A| Y),@(U)>}
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Ideas behind DADP

Dual approximation as constraint relaxation

The original problem is (abstract form)

HA
s.t. ©U)=0

written as

LrInEIZr/]{ max J(U)+E[(X©(U))]

Subsituting A by E(A|Y) gives

LTeIer{ max JU)+E [Q\,E(@(U)’ Y)>}

equivalent to

HA

s.t. E(©(U)|Y)=0
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Decomposition Methods
DADP in a nutshell Spatial Decomposition
Ideas behind DADP

Three Interpretations of DADP

@ DADP as an approximation of the optimal multiplier

A 2 E(At} Yt) :

t

@ DADP as a decision-rule approach in the dual

max min L(X, U) ~ max m|n LA U) .
XU A2Y,

@ DADP as a constraint relaxation in the primal

Sew)=o - B(Yew)
i=1 i=1

v)=o.

V. Leclére DADP August 30, 2016
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Decomposition M
DADP in a nutshell Spatial Decom o
Ideas behind DADP

Theoretical Results

Consistence of the approximation (if we consider a sequence
of approximated problems).

Existence of multiplier of the coupling constraint.

Convergence of the decomposition algorithm for a given
relaxation.

(]

Lower and upper bounds on the original problem.

A posteriori verification allowing for better multiplier update.

V. Leclere DADP August 30, 2016 16 / 29



Decomposition Methods
DADP in a nutshell Spatial Decomposition
Ideas behind DADP

Consistence of the Approximation Scheme

e The DADP algorithm solves a relaxation (Py) of the original
problem (P) where

n

Sowy=0  ~ (3w

i=1
(Py).
@ Question: if we consider a sequence of information processes
{Y(”)}HGN, such that the information converges

o (Y) = o(Wy, -, W,)

does the associated sequence (UY(")) of optimal control
converges toward an optimal control of (P)?

V. Leclere DADP August 30, 2016 17 /29



Decomposition Methods
DADP in a nutshell Spatial Decomposition
Ideas behind DADP

Epiconvergence of Approximation

Epiconvergence result
Assume that

@ the cost functions L%, dynamic functions f, and constraint
functions 6 are continuous;

@ the noise variables W, are essentially bounded;

@ the constraint sets Z/{fff are bounded.
Consider a sequence of information process {Y(")}nEN such that
o (Y(")) Kudo-converges toward F... Let U(" be an ¢,-optimal
solution to the relaxed problem (PY(")).
Then, every cluster point? of {U(”)} is an optimal solution of
the relaxation corresponding to F.

neN

“for the topology of the convergence in probability

August 30, 2016 18 /29
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Decomposition Methods
DADP in a nutshell Spatial Decomposition
Ideas behind DADP

Choosing an Information Process Y

o Perfect memory: Y/ = (W,,..., W,).
~> equivalent to original problem, no numerical gain.
@ Minimal information: Yti = cste.
~> equivalent to replacing a.s. constraint by expected
constraint. Subproblems solved efficiently (state X!),
multiplier is deterministic.
e Static information: Y] = hi(W,).
~~ Subproblems solved efficiently (state X[).
e Dynamic information: Y/, = hi(Y}, W, ).
~» A number of possibilities. Some ideas:
o mimicking the trajectory of the state of another unit (phantom
state),
e mimicking the control of other units,
e Markov chain representing rougly the general state of the
system.

V. Leclere DADP August 30, 2016 19 /29



Decomposition Methods
DADP in a nutshell Spatial Decomposition
Ideas behind DADP

Numerical Advantages of a finitely supported Y

@ Assume that each noise W, take w values, and the constraint
function take value in R.

@ Then the multiplier A, of the almost sure constraint at time t
lives in R"™E,

@ Assume that the information process at time t take y values,
then the multiplier of the relaxed constraint p, lives in R”.

@ Moreover each subproblems take “only” roughly y times more
computational effort to solve than the subproblem with local
state Xj.

V. Leclere DADP August 30, 2016 20 /29
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© Numerical experiments
@ Academic examples
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Four case studies

-

Discretization
T ~~ 12
X ~ 41
U~ 6
w ~~ 10

£
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Academic examples
More realistic examples

Numerical experiments

Results
| Valley | 3-Dams | 4-Dams [ 5-Dams | 6-Dams |
DP CPU time 5’ 1630’ 461200’ N.A.
DP value 2482.0 3742.7 4681.6 N.A.
SDDP, value 2474.2 3736.4 4672.2 7014.8
SDDP; CPU time 0.3 2' 16’ 320’
SDDP. value 24791 3739.7 46785 7016.4
SDDP, CPU time 5’ 9' 11’ 13’

Table: Results obtained by DP, SDDP, and SDDP,

Results obtained using a 4 cores — 8 threads Intel®Core i7 based computer.
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More realistic examples

Numerical experiments

Results

| Valley | 3-Dams | 4-Dams [ 5-Dams | 6-Dams |
DP CPU time 5’ 1630’ 461200’ N.A.

DP value 2482.0 3742.7 4681.6 N.A.

SDDP, value 2474.2 3736.4 4672.2 7014.8

SDDP; CPU time 0.3 2' 16’ 320’

SDDP, value 2479.1 3739.7 4678.5 7016.4

SDDP, CPU time 5 9' 11’ 13’
Table: Results obtained by DP, SDDP, and SDDP,

[ Valley | 3-Dams | 4-Dams | 5-Dams | 6-Dams |
DADP CPU time 3 6' 5 13’
DADP value 2401.3 3667.0 4633.7 63816.5
Gap with DP -3.2% —2.0% —-1.0% —2.8%

Table: Results obtained by DADP “Expectation”

Results obtained using a 4 cores — 8 threads Intel®Core i7 based computer.
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More realistic examples

Numerical experiments

© Numerical experiments

@ More realistic examples

V. Leclere
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Academic examples

: . More realistic examples
Numerical experiments

Two “true” valleys

B
T
[s4]

T~ 12, W ~ 10

realistic grids for U and X

an'ihe fon ihe|

Vicdessos Dordogne

V. Leclere DADP August 30, 2016 25 /29



Academic examples
More realistic examples

Numerical experiments

Results
[ Valley | Vicdessos Dordogne
SDDP; CPU time 90’ 86000’
SDDP; value 2232.1 21904.5
SDDP,. CPU time 23’ 28’
SDDP. value 2220.6 22035.2

Table: Results obtained by SDDPy and SDDP,
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Academic examples

: . More realistic examples
Numerical experiments

Results

[ Valley | Vicdessos Dordogne
SDDPy CPU time 90’ 86000’
SDDPy value 2232.1 21904.5
SDDP, CPU time 23’ 28’
SDDP. value 2220.6 22035.2

Table: Results obtained by SDDPy and SDDP,

| Valley | Vicdessos | Dordogne |
DADP CPU time 10’ 155’
DADP value 2237.4 21499.8
Gap with SDDP4 +0.2% -1.8%

Table: Results obtained by DADP “Expectation”
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Academic examples

More realistic examples
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Academic examples

: . More realistic examples
Numerical experiments

Conclusions and perspectives

Conclusions for DADP
@ Fast numerical convergence of the method.
@ Near-optimal results even when using a “crude” relaxation.

@ Method that can be used for very large valleys

General perspectives
@ Apply to more complex topologies (smart grids).
@ Connection with other decomposition methods.

@ Theoretical study.
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Numerical experiments
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