Sparse recovery under weak moment assumptions

Guillaume Lecué

CNRS, CREST, ENSAE

August 2016 - journée MAS Grenoble

joint works with Sjoerd Dirksen, Shahar Mendelson and Holger Rauhut

Exact reconstruction from few linear measurements (Compressed sensing)

 $X_{n} \xrightarrow{X_{3}} x \in \mathbb{R}^{p}$ $X_{n} \xrightarrow{X_{1} \in \mathbb{R}^{p}}$ $X_{1} \in \mathbb{R}^{p}$

 X_1, \ldots, X_n : *n* measurements vectors

$$||x||_0 = |\{j : x_j \neq 0\}| \le s : s$$
-sparse

$$||x||_0 = |\{j : x_j \neq 0\}| \le s : s$$
-sparse

aim : exact reconstruction of any *s*-sparse vector *x* from $(\langle X_i, x \rangle)_{i=1}^n$

$$||x||_0 = |\{j : x_j \neq 0\}| \le s : s$$
-sparse

aim : exact reconstruction of any *s*-sparse vector *x* from $(\langle X_i, x \rangle)_{i=1}^n$

Questions :

$$||x||_0 = |\{j : x_j \neq 0\}| \le s : s$$
-sparse

aim : exact reconstruction of any *s*-sparse vector *x* from $(\langle X_i, x \rangle)_{i=1}^n$

Questions :

• what is the minimal number of measurements n?

$$||x||_0 = |\{j : x_j \neq 0\}| \le s : s$$
-sparse

aim : exact reconstruction of any *s*-sparse vector *x* from $(\langle X_i, x \rangle)_{i=1}^n$

Questions:

- what is the minimal number of measurements n?
- how to choose the measurement vectors X_1, \ldots, X_n ?

 $||x||_0 = |\{j : x_j \neq 0\}| \le s : s$ -sparse

aim : exact reconstruction of any *s*-sparse vector *x* from $(\langle X_i, x \rangle)_{i=1}^n$

Questions :

- what is the minimal number of measurements *n*?
- how to choose the measurement vectors X_1, \ldots, X_n ?
- p : space dimension, n : number of measurements, s : sparsity parameter.

$\ell_0\text{-minimization}$ is NP-hard

 ℓ_0 -minimization procedure

minimize
$$||t||_0$$
 subject to $\langle X_i, t \rangle = \langle X_i, x \rangle, i = 1, \dots, n.$

 ℓ_0 -minimization procedure

minimize
$$||t||_0$$
 subject to $\langle X_i, t \rangle = \langle X_i, x \rangle, i = 1, \dots, n$.

$$\operatorname{argmin}\left(\|t\|_{0}: \Gamma t = \Gamma x\right) = \{x\}$$
 for any $\|x\|_{0} \leq s$.

 ℓ_0 -minimization procedure

minimize
$$||t||_0$$
 subject to $\langle X_i, t \rangle = \langle X_i, x \rangle, i = 1, \dots, n$.

$$\operatorname{argmin}ig(\|t\|_0: {\mathsf \Gamma} t={\mathsf \Gamma} xig)=\{x\} ext{ for any } \|x\|_0\leq s.$$

 \Leftrightarrow

• $n \ge 2s$ is the minimal number of measurements.

 ℓ_0 -minimization procedure

minimize
$$||t||_0$$
 subject to $\langle X_i, t \rangle = \langle X_i, x \rangle, i = 1, \dots, n$.

$$\operatorname{argmin}ig(\|t\|_0: \mathsf{\Gamma} t=\mathsf{\Gamma} xig)=\{x\}$$
 for any $\|x\|_0\leq s.$

 \Leftrightarrow

• $n \ge 2s$ is the minimal number of measurements.

2 Γ = the 2*s* first Fourier basis vectors

 ℓ_0 -minimization procedure

minimize
$$||t||_0$$
 subject to $\langle X_i, t \rangle = \langle X_i, x \rangle, i = 1, \dots, n$.

$$\operatorname{argmin}ig(\|t\|_0: {\mathsf \Gamma} t={\mathsf \Gamma} xig)=\{x\} ext{ for any } \|x\|_0\leq s.$$

 \Leftrightarrow

- $n \ge 2s$ is the minimal number of measurements.
- **2** Γ = the 2*s* first Fourier basis vectors
- Natarajan, 1995 : l₀-minimization is NP-hard (solves the "exact cover by 3-sets problem").

minimize
$$||t||_1$$
 subject to $\langle X_i, t \rangle = \langle X_i, x \rangle, i = 1, \dots, n$.

minimize
$$||t||_1$$
 subject to $\langle X_i, t \rangle = \langle X_i, x \rangle, i = 1, \dots, n$.

BP can be recasted to a linear programming

Basis pursuit - [Logan, 1965], [Donoho, Logan, 1992], [...]

minimize
$$||t||_1$$
 subject to $\langle X_i, t \rangle = \langle X_i, x \rangle, i = 1, \dots, n$.

BP can be recasted to a linear programming

Definition

We say that $\Gamma = n^{-1/2} \sum_{i=1}^{n} \langle X_i, \cdot \rangle e_i$ satisfies the exact reconstruction property of order *s* when :

for any
$$||x||_0 \le s$$
, argmin $(||t||_1 : \Gamma t = \Gamma x) = \{x\}$ (ER(s))

Basis pursuit - [Logan, 1965], [Donoho, Logan, 1992], [...]

minimize
$$||t||_1$$
 subject to $\langle X_i, t \rangle = \langle X_i, x \rangle, i = 1, \dots, n$.

BP can be recasted to a linear programming

Definition

We say that $\Gamma = n^{-1/2} \sum_{i=1}^{n} \langle X_i, \cdot \rangle e_i$ satisfies the exact reconstruction property of order *s* when :

for any
$$||x||_0 \le s$$
, argmin $(||t||_1 : \Gamma t = \Gamma x) = \{x\}$ (ER(s))

Proposition : Γ satisfies $ER(s) \Rightarrow n \gtrsim s \log(ep/s)$

Basis pursuit - [Logan, 1965], [Donoho, Logan, 1992], [...]

minimize
$$||t||_1$$
 subject to $\langle X_i, t \rangle = \langle X_i, x \rangle, i = 1, \dots, n$.

BP can be recasted to a linear programming

Definition

We say that $\Gamma = n^{-1/2} \sum_{i=1}^{n} \langle X_i, \cdot \rangle e_i$ satisfies the exact reconstruction property of order *s* when :

for any
$$||x||_0 \le s$$
, argmin $(||t||_1 : \Gamma t = \Gamma x) = \{x\}$ (ER(s))

Proposition : Γ satisfies $ER(s) \Rightarrow n \gtrsim s \log(ep/s)$

Question : construction of Γ satisfying ER(s) with $n \sim s \log(ep/s)$.

$\begin{array}{ll} \mathsf{RIP}(c_0s): & \text{ for any } \|x\|_0 \leq c_0s, & \frac{1}{2}\|x\|_2 \leq \|\mathsf{\Gamma}x\|_2 \leq \frac{3}{2}\|x\|_2. \\ & \quad [\mathsf{Candès \& Romberg \& Tao}\ , 05, 06] \end{array}$

 $\begin{aligned} \mathsf{RIP}(c_0s): & \text{ for any } \|x\|_0 \leq c_0s, \quad \frac{1}{2} \|x\|_2 \leq \|\Gamma x\|_2 \leq \frac{3}{2} \|x\|_2. \\ & [\mathsf{Candès \& Romberg \& Tao , 05, 06]} \\ & \downarrow \\ & \text{ for any } x \in \sqrt{c_1s} B_1^p \cap S_2^{p-1}, \quad \|\Gamma x\|_2 > 0 \\ & [\mathsf{Kashin \& Temlyakov , 07]} \end{aligned}$

 $\begin{array}{ll} \mathsf{RIP}(c_0s): & \text{ for any } \|x\|_0 \leq c_0s, & \frac{1}{2}\|x\|_2 \leq \|\Gamma x\|_2 \leq \frac{3}{2}\|x\|_2. \\ & [\mathsf{Candès} \& \ \mathsf{Romberg} \& \ \mathsf{Tao} \ , 05, 06] \\ & \psi \\ & \text{ for any } x \in \sqrt{c_1s}B_1^p \cap S_2^{p-1}, & \|\Gamma x\|_2 > 0 \\ & [\mathsf{Kashin} \& \ \mathsf{Temlyakov} \ , 07] \\ & \psi \\ & \mathsf{NSP}(s): & \text{ for any } h \in \ker \Gamma \setminus \{0\}, |I| \leq s, \|h_I\|_1 < \|h_{I^c}\|_1 \\ & [\mathsf{Donoho} \ , \ \mathsf{Elad} \ , \ \mathsf{Huo} \ , 01, 03] \end{array}$

 $\mathsf{RIP}(c_0 s): \quad \text{for any } \|x\|_0 \le c_0 s, \quad \frac{1}{2} \|x\|_2 \le \|\Gamma x\|_2 \le \frac{3}{2} \|x\|_2.$ [Candès & Romberg & Tao, 05, 06] 11 for any $x \in \sqrt{c_1 s} B_1^p \cap S_2^{p-1}$, $\|\Gamma x\|_2 > 0$ [Kashin & Temlyakov , 07] ↓ NSP(s): for any $h \in \ker \Gamma \setminus \{0\}, |I| \leq s, ||h_I||_1 < ||h_{I^c}||_1$ [Donoho, Elad, Huo, 01, 03] Î **ER(s)** for any $||x||_0 \le s$, argmin $(||t||_1 : \Gamma t = \Gamma x) = \{x\}$ $\mathsf{RIP}(c_0 s): \quad \text{for any } \|x\|_0 \le c_0 s, \quad \frac{1}{2} \|x\|_2 \le \|\Gamma x\|_2 \le \frac{3}{2} \|x\|_2.$ [Candès & Romberg & Tao, 05, 06] 11 for any $x \in \sqrt{c_1 s} B_1^p \cap S_2^{p-1}$, $\|\Gamma x\|_2 > 0$ [Kashin & Temlyakov, 07] 1 for any $h \in \ker \Gamma \setminus \{0\}, |I| \le s, \|h_I\|_1 < \|h_{I^c}\|_1$ NSP(s): [Donoho, Elad, Huo, 01, 03] Î **ER**(s) for any $||x||_0 \le s$, argmin $(||t||_1 : \Gamma t = \Gamma x) = \{x\}$ $(\Leftrightarrow \Gamma B_1^p \text{ is } s - \text{neighborly}, [Donoho, 05])$ $(\leftarrow \text{Incoherency conditions})$

So far, only random matrices satisfy ER(s) with $n \sim s \log (ep/s)$ (with large probability).

So far, only random matrices satisfy ER(s) with $n \sim s \log (ep/s)$ (with large probability).

Examples :

• Independent, isotropic (i.e. $\mathbb{E}\langle X, t \rangle^2 = ||t||_2^2$) and subgaussian (i.e. $\mathbb{P}[|\langle X, t \rangle| \ge u ||t||_2] \le 2 \exp(-c_0 u^2)$) rows : RIP(s) is satisfied when $n \sim s \log(ep/s)$ [Candès, Tao, Vershynin, Rudelson, Mendelson, Pajor, Tomjack-Jaegermann].

So far, only random matrices satisfy ER(s) with $n \sim s \log (ep/s)$ (with large probability).

Examples :

- Independent, isotropic (i.e. $\mathbb{E}\langle X, t \rangle^2 = ||t||_2^2$) and subgaussian (i.e. $\mathbb{P}[|\langle X, t \rangle| \ge u||t||_2] \le 2 \exp(-c_0 u^2)$) rows : RIP(s) is satisfied when $n \sim s \log(ep/s)$ [Candès, Tao, Vershynin, Rudelson, Mendelson, Pajor, Tomjack-Jaegermann].
- independent log-concave rows or independent sub-exponential columns satisfy RIP(s) when n ~ s log²(ep/s) [Adamczack, Latala, Litvak, Pajor, Tomjack-Jaegermann].

So far, only random matrices satisfy ER(s) with $n \sim s \log (ep/s)$ (with large probability).

Examples :

- Independent, isotropic (i.e. $\mathbb{E}\langle X, t \rangle^2 = ||t||_2^2$) and subgaussian (i.e. $\mathbb{P}[|\langle X, t \rangle| \ge u||t||_2] \le 2 \exp(-c_0 u^2)$) rows : RIP(s) is satisfied when $n \sim s \log(ep/s)$ [Candès, Tao, Vershynin, Rudelson, Mendelson, Pajor, Tomjack-Jaegermann].
- independent log-concave rows or independent sub-exponential columns satisfy RIP(s) when n ~ s log²(ep/s) [Adamczack, Latala, Litvak, Pajor, Tomjack-Jaegermann].
- Structured matrices : partial Fourier matrices satisfy RIP(s) [Rudelson, Vershynin, Candès, Tao, Bourgain] when $n \gtrsim s \log^3(p)$.

Can we take "Cauchy measurements" (density $\propto (1 + x^2)^{-1}$)?

 $X = (x_1, \ldots, x_p)$ where x_i are ind. Cauchy variables

and still get the same properties as for "Gaussian measurements"?

Can we take "Cauchy measurements" (density $\propto (1 + x^2)^{-1}$)?

 $X = (x_1, \ldots, x_p)$ where x_i are ind. Cauchy variables

and still get the same properties as for "Gaussian measurements"?

Here : we will need log p moments for the coordinates x_i 's.

• Let $\Gamma = n^{-1/2}(e_{ij}) \in \mathbb{R}^{n \times p}$ where e_{ij} are iid symmetric exponential.

• Let $\Gamma = n^{-1/2}(e_{ij}) \in \mathbb{R}^{n \times p}$ where e_{ij} are iid symmetric exponential. If Γ satisfies RIP(s) with probability at least 1/2 then

 $n \gtrsim s \log^2 (ep/s).$

[Adamczack, Latala, Litvak, Pajor, Tomjack-Jaegermann]

• Let $\Gamma = n^{-1/2}(e_{ij}) \in \mathbb{R}^{n \times p}$ where e_{ij} are iid symmetric exponential. If Γ satisfies RIP(s) with probability at least 1/2 then

 $n \gtrsim s \log^2 (ep/s).$

[Adamczack, Latala, Litvak, Pajor, Tomjack-Jaegermann]

 If Γ has independent isotropic sub-exponential rows then it satisfies ER(s) with large probability when

 $n \gtrsim s \log (ep/s).$

[Koltchinksii] and [Foucart and Lai]

• Let $\Gamma = n^{-1/2}(e_{ij}) \in \mathbb{R}^{n \times p}$ where e_{ij} are iid symmetric exponential. If Γ satisfies RIP(s) with probability at least 1/2 then

 $n \gtrsim s \log^2 (ep/s).$

[Adamczack, Latala, Litvak, Pajor, Tomjack-Jaegermann]

 If Γ has independent isotropic sub-exponential rows then it satisfies ER(s) with large probability when

 $n \gtrsim s \log (ep/s).$

[Koltchinksii] and [Foucart and Lai]

Exact reconstruction under weak concentration property cannot be studied via RIP

Proposition (L. and Mendelson)

Let $\Gamma : \mathbb{R}^p \mapsto \mathbb{R}^n$ such that

• for any $||t||_0 \le s : ||\Gamma t||_2 \ge \kappa_0 ||t||_2$,

Proposition (L. and Mendelson)

Let $\Gamma : \mathbb{R}^p \mapsto \mathbb{R}^n$ such that

- for any $||t||_0 \le s : ||\Gamma t||_2 \ge \kappa_0 ||t||_2$,
Proposition (L. and Mendelson)

Let $\Gamma : \mathbb{R}^p \mapsto \mathbb{R}^n$ such that

- for any $||t||_0 \le s : ||\Gamma t||_2 \ge \kappa_0 ||t||_2$,
- **2** $\|\Gamma e_j\|_2 \leq c_0, \forall 1 \leq j \leq p \text{ (where } (e_1, \ldots, e_p) \text{ is the canonical basis)}$

Then, $\forall t \in \sqrt{c_1 s} B_1^p \cap S_2^{p-1}$, $\|\Gamma t\|_2 \ge c_2 > 0$ and so ER(s) holds.

$$\forall \|t\|_0 \le s, \frac{1}{2} \|t\|_2 \le \|\Gamma t\|_2 \le \frac{3}{2} \|t\|_2$$

$$\forall \|t\|_0 \leq s, \frac{1}{2} \|t\|_2 \leq \|\Gamma t\|_2 \leq \frac{3}{2} \|t\|_2$$

• $\forall \|t\|_0 \le s \|\Gamma t\|_2 \ge \kappa_0 \|t\|_2$, • $\max_{1 \le j \le p} \|\Gamma e_j\|_2 \le c_0$.

Both implies Exact reconstruction ER(s).

 $\kappa_0 \|t\|_2$,

$$\forall \|t\|_0 \leq s, \frac{1}{2} \|t\|_2 \leq \|\Gamma t\|_2 \leq \frac{3}{2} \|t\|_2$$

$$\forall \|t\|_0 \leq s \|\Gamma t\|_2 \geq \kappa_0 \|t\|_2,$$

$$\forall \|t\|_0 \leq s \|\Gamma t\|_2 \geq \kappa_0 \|t\|_2,$$

$$\texttt{max}_{1 \leq j \leq p} \|\Gamma e_j\|_2 \leq c_0.$$

$$\texttt{Both implies Exact reconstruction ER}(s).$$

• LHS of RIP is implied by the small ball property : "no cost"

$$\forall \|t\|_0 \leq s, \frac{1}{2} \|t\|_2 \leq \|\Gamma t\|_2 \leq \frac{3}{2} \|t\|_2$$

$$\forall \|t\|_0 \leq s \|\Gamma t\|_2 \geq \kappa_0 \|t\|_2,$$

$$\forall \|t\|_0 \leq s \|\Gamma t\|_2 \geq \kappa_0 \|t\|_2,$$

$$\Rightarrow \max_{1 \leq j \leq p} \|\Gamma e_j\|_2 \leq c_0.$$

$$Both implies Exact reconstruction ER(s).$$

- LHS of RIP is implied by the small ball property : "no cost"
- RHS of RIP requires deviation (ψ_2) .

• Z is subgaussian $(\psi_2) \Leftrightarrow \|Z\|_{L_q} \lesssim \sqrt{q}$ for all q's

- Z is subgaussian $(\psi_2) \Leftrightarrow \|Z\|_{L_q} \lesssim \sqrt{q}$ for all q's
- 2 is subexponential $(\psi_1) \Leftrightarrow \|Z\|_{L_q} \lesssim q$ for all q's

- Z is subgaussian $(\psi_2) \Leftrightarrow \|Z\|_{L_q} \lesssim \sqrt{q}$ for all q's
- 2 is subexponential $(\psi_1) \Leftrightarrow ||Z||_{L_q} \lesssim q$ for all q's
- $I is \psi_{\alpha} \Leftrightarrow \|Z\|_{L_q} \lesssim q^{1/\alpha} \text{ for all } q's$

- Z is subgaussian $(\psi_2) \Leftrightarrow \|Z\|_{L_q} \lesssim \sqrt{q}$ for all q's
- 2 is subexponential $(\psi_1) \Leftrightarrow \|Z\|_{L_q} \lesssim q$ for all q's

③
$$Z$$
 is $\psi_{oldsymbol{lpha}} \Leftrightarrow \|Z\|_{L_q} \lesssim q^{1/lpha}$ for all q 's

Here, we assume that the measurement vector $X = (x_1, \ldots, x_p) \in \mathbb{R}^p$ is such that : $\|x_j\|_{L_2} = 1$ and

 $\|x_j\|_{L_q} \leq \kappa_0 q^\eta$, for $q \sim \log(p)$

for some $\eta \geq 1/2$.

There exists two constants u_0, β_0 such that $: \forall ||t||_0 \leq s$,

 $P\big[|\langle X,t\rangle|\geq u_0\|t\|_2\big]\geq\beta_0$

There exists two constants u_0, β_0 such that $: \forall ||t||_0 \leq s$,

 $P[|\langle X,t\rangle| \geq u_0 ||t||_2] \geq \beta_0$

Examples :

1) if X is isotropic $(\mathbb{E}\langle X, t \rangle^2 = ||t||_2^2)$ and for all $||t||_0 \leq s$, $||\langle X, t \rangle||_{L_{2+\epsilon}} \leq \kappa_0 ||\langle X, t \rangle||_{L_2}$

for some $\epsilon > 0$.

There exists two constants u_0, β_0 such that : $\forall ||t||_0 \leq s$,

 $P[|\langle X,t\rangle| \geq u_0 ||t||_2] \geq \beta_0$

Examples :

1) if X is isotropic $(\mathbb{E}ig\langle X,tig
angle^2=\|t\|_2^2)$ and for all $\|t\|_0\leq s$,

 $\|\langle X,t\rangle\|_{L_{2+\epsilon}} \leq \kappa_0 \|\langle X,t\rangle\|_{L_2}$

for some $\epsilon > 0$.

2) if X is isotropic and for all $||t||_0 \leq s$,

 $\|\langle X,t\rangle\|_{L_2}\leq \kappa_0\|\langle X,t\rangle\|_{L_1}.$

[RV13] : "Small ball probabilities for linear images of high dimensional distributions" M. Rudelson and R. Vershynin.

[RV13] : "Small ball probabilities for linear images of high dimensional distributions" M. Rudelson and R. Vershynin.

3) $X = (x_1, ..., x_p)$ with independent absolutly continuus coordinates with density bounded by K a.s. then for any $t \in \mathbb{R}^p$,

$$P\Big[\big|\big\langle X,t\big\rangle\big| \ge (4\sqrt{2}K)^{-1}\|t\|_2\Big] \ge \frac{1}{2}.$$

(For example, a Cauchy measurement vector satisfies the small ball property).

[RV13] : "Small ball probabilities for linear images of high dimensional distributions" M. Rudelson and R. Vershynin.

 X = (x₁,...,x_p) with independent absolutly continous coordinates with density bounded by K a.s. then for any t ∈ ℝ^p,

$$P\Big[\big|\big\langle X,t\big\rangle\big| \ge (4\sqrt{2}K)^{-1}\|t\|_2\Big] \ge \frac{1}{2}$$

(For example, a Cauchy measurement vector satisfies the small ball property).

4) $X = (x_1, \ldots, x_p)$ with independent coordinates such that

$$\mathcal{L}(x_i, t_0) := \sup_{u \in \mathbb{R}} P[|x_i - u| \le t_0] \le p_0$$

for some $t_0, p_0 > 0$.

[RV13] : "Small ball probabilities for linear images of high dimensional distributions" M. Rudelson and R. Vershynin.

 X = (x₁,...,x_p) with independent absolutly continous coordinates with density bounded by K a.s. then for any t ∈ ℝ^p,

$$P\Big[\big|\big\langle X,t\big\rangle\big| \ge (4\sqrt{2}K)^{-1}\|t\|_2\Big] \ge \frac{1}{2}$$

(For example, a Cauchy measurement vector satisfies the small ball property).

4) $X = (x_1, \ldots, x_p)$ with independent coordinates such that

$$\mathcal{L}(x_i, t_0) := \sup_{u \in \mathbb{R}} P[|x_i - u| \le t_0] \le p_0$$

for some $t_0, p_0 > 0$. then for any $t \in \mathbb{R}^p$,

$$P\Big[\big|\langle X,t\rangle\big|\geq t_0\|t\|_2\Big]\geq 1-c_0p_0.$$

Let X_1, \ldots, X_n be n iid $\sim X = (x_1, \ldots, x_p)^\top$ random variables in \mathbb{R}^p s.t. :

Let X_1, \ldots, X_n be $n \text{ iid} \sim X = (x_1, \ldots, x_p)^\top$ random variables in \mathbb{R}^p s.t. : $\|x_j\|_{L_2} = 1$ and for some $\eta \ge 1/2$ and $q = \kappa_1 \log(wp)$:

 $\|x_j\|_{L_q}\leq \kappa_0 q^{\eta},$

Let X_1, \ldots, X_n be n iid $\sim X = (x_1, \ldots, x_p)^\top$ random variables in \mathbb{R}^p s.t. : $\|x_j\|_{L_2} = 1$ and for some $\eta \ge 1/2$ and $q = \kappa_1 \log(wp)$:

 $\|x_j\|_{L_q}\leq \kappa_0 q^{\eta},$

2 there exists u_0, β_0 such that : $\forall t, ||t||_0 \leq s$,

 $P[|\langle X,t\rangle| \geq u_0 ||t||_2] \geq \beta_0$

Let X_1, \ldots, X_n be $n \text{ iid} \sim X = (x_1, \ldots, x_p)^{\top}$ random variables in \mathbb{R}^p s.t. : • $||x_j||_{L_2} = 1$ and for some $\eta \ge 1/2$ and $q = \kappa_1 \log(wp)$: $||x_j||_{L_q} \le \kappa_0 q^{\eta}$, • there exists u_0, β_0 such that : $\forall t, ||t||_0 \le s$, $P[|\langle X, t \rangle| \ge u_0 ||t||_2] \ge \beta_0$ • $n \gtrsim s \log(ep/s)$.

Let X_1, \ldots, X_n be $n \text{ iid} \sim X = (x_1, \ldots, x_p)^{\top}$ random variables in \mathbb{R}^p s.t. : • $||x_j||_{L_2} = 1$ and for some $\eta \ge 1/2$ and $q = \kappa_1 \log(wp)$: $||x_j||_{L_q} \le \kappa_0 q^{\eta}$, • there exists u_0, β_0 such that : $\forall t, ||t||_0 \le s$, $P[|\langle X, t \rangle| \ge u_0 ||t||_2] \ge \beta_0$ • $n \ge s \log(ep/s)$. Then, with probability at least $1 - 2 \exp(-c_1 n \beta_0^2) - 1/(w^{\kappa_1} p^{\kappa_1 - 1})$,

$$\Gamma = \frac{1}{\sqrt{n}} \begin{pmatrix} X_1^{\top} \\ \vdots \\ X_n^{\top} \end{pmatrix} \text{ satisfies } \frac{\text{ER}}{(c_2 u_0^2 \beta_0 s)}.$$

There exists a real-valued random variable x such that

 $\bullet \mathbb{E}x = 0, \mathbb{E}x^2 = 1, \mathbb{E}x^4 \lesssim 1$

There exists a real-valued random variable x such that

•
$$\mathbb{E}x = 0$$
, $\mathbb{E}x^2 = 1$, $\mathbb{E}x^4 \lesssim 1$

There exists a real-valued random variable x such that

 $||x||_{L_q} \lesssim \sqrt{q} \text{ for } q \sim (\log p) / \log \log p$

for which if x_{ij} are iid~ x, for $n \sim \log p$ then

 $\Gamma = n^{-1/2} (x_{ij} : 1 \le i \le n, 1 \le j \le p),$

 Γ does not satisfy the *ER*(1) with probability at least 1/2.

There exists a real-valued random variable x such that

 $||x||_{L_q} \lesssim \sqrt{q} \ \text{for } q \sim (\log p) / \log \log p$

for which if x_{ij} are iid~ x, for $n \sim \log p$ then

 $\Gamma = n^{-1/2} \big(x_{ij} : 1 \le i \le n, 1 \le j \le p \big),$

 Γ does not satisfy the *ER(1)* with probability at least 1/2.

 \Rightarrow We need at least $\log p / \log \log p$ moments for exact reconstruction via basis pursuit.

Theorem (L. & Mendelson)

Let X_1, \ldots, X_n be n iid $\sim X$ random variables in \mathbb{R}^p s.t. :

Theorem (L. & Mendelson)

Let X_1, \ldots, X_n be n iid $\sim X$ random variables in \mathbb{R}^p s.t. :

• there exists u_0, β_0 such that : $\forall t, ||t||_0 \leq s$,

 $P\big[|\langle X,t\rangle|\geq u_0\|t\|_2\big]\geq\beta_0$

Theorem (L. & Mendelson)

Let X_1, \ldots, X_n be n iid $\sim X$ random variables in \mathbb{R}^p s.t. :

• there exists u_0, β_0 such that : $\forall t, ||t||_0 \leq s$,

 $P\big[|\langle X,t\rangle|\geq u_0\|t\|_2\big]\geq\beta_0$

 $n \gtrsim s \log(ep/s).$

Theorem (L. & Mendelson)

Let X_1, \ldots, X_n be n iid $\sim X$ random variables in \mathbb{R}^p s.t. :

• there exists u_0, β_0 such that : $\forall t, ||t||_0 \leq s$,

 $P[|\langle X,t\rangle| \geq u_0 ||t||_2] \geq \beta_0$

 $n \gtrsim s \log(ep/s).$

Then, with probability at least $1 - 2 \exp(-c_1 n \beta_0^2)$,

$$\Gamma = \frac{1}{\sqrt{n}} \left(\begin{array}{c} X_1^\top \\ \vdots \\ X_n^\top \end{array} \right)$$

is such that for any $||x||_0 \leq s$, argmin $(||t||_0 : \Gamma t = \Gamma x) = \{x\}$.

Theorem (L. & Mendelson)

Let X_1, \ldots, X_n be n iid $\sim X$ random variables in \mathbb{R}^p s.t. :

• there exists u_0, β_0 such that : $\forall t, ||t||_0 \leq s$,

 $P\big[|\langle X,t\rangle|\geq u_0\|t\|_2\big]\geq\beta_0$

 $n \gtrsim s \log(ep/s).$

Then, with probability at least $1 - 2 \exp(-c_1 n \beta_0^2)$,

$$\Gamma = \frac{1}{\sqrt{n}} \left(\begin{array}{c} X_1^\top \\ \vdots \\ X_n^\top \end{array} \right)$$

is such that for any $||x||_0 \leq s$, argmin $(||t||_0 : \Gamma t = \Gamma x) = \{x\}$.

⇒ We don't need moment assumption for ℓ_0 – *minimization*. This proves that there is a *price to pay* in terms of concentration for convex relaxation.

conclusion and comments for the exact reconstruction problem

• Exact reconstruction via Basis Pursuit for random linear measurements under log *p* moments is possible with the same number of measurements as in the Gaussian case.

conclusion and comments for the exact reconstruction problem

- Exact reconstruction via Basis Pursuit for random linear measurements under log p moments is possible with the same number of measurements as in the Gaussian case.
- **②** RIP needs ψ_2 -concentration (and thus may not be the "optimal" way to prove exact reconstruction)

conclusion and comments for the exact reconstruction problem

- Exact reconstruction via Basis Pursuit for random linear measurements under log p moments is possible with the same number of measurements as in the Gaussian case.
- **②** RIP needs ψ_2 -concentration (and thus may not be the "optimal" way to prove exact reconstruction)
- On the property of randomness that looks "important" for exact reconstruction of *s*-sparse vectors : ∀||*t*||₀ ≤ *s*,

 $P[|\langle X,t\rangle|\geq u_0\|t\|_2]\geq \beta_0.$
conclusion and comments for the exact reconstruction problem

- Exact reconstruction via Basis Pursuit for random linear measurements under log p moments is possible with the same number of measurements as in the Gaussian case.
- **②** RIP needs ψ_2 -concentration (and thus may not be the "optimal" way to prove exact reconstruction)
- On the property of randomness that looks "important" for exact reconstruction of *s*-sparse vectors : ∀||*t*||₀ ≤ *s*,

 $P[|\langle X,t\rangle|\geq u_0\|t\|_2]\geq\beta_0.$

log p/log log p moments is a necessary price to pay for convex relaxation.

Data : $y = Q_{\theta}(\Gamma x)$ where $Q_{\theta} : \mathbb{R}^m \to (\theta \mathbb{Z} + \theta/2)^m$.

Data : $y = Q_{\theta}(\Gamma x)$ where $Q_{\theta} : \mathbb{R}^m \to (\theta \mathbb{Z} + \theta/2)^m$. "Model" : $y = \Gamma x + e$ where $||e||_{\infty} \le \theta/2$ **Data** : $y = Q_{\theta}(\Gamma x)$ where $Q_{\theta} : \mathbb{R}^m \to (\theta\mathbb{Z} + \theta/2)^m$. "Model" : $y = \Gamma x + e$ where $||e||_{\infty} \le \theta/2$ **Procedure** : $BPDN_{\infty}$

$$\min_{t\in\mathbb{R}^p}\|t\|_1 \text{ s.t.}\|y-\Gamma t\|_{\infty} \leq \theta/2$$

Data : $y = Q_{\theta}(\Gamma x)$ where $Q_{\theta} : \mathbb{R}^m \to (\theta\mathbb{Z} + \theta/2)^m$. "Model" : $y = \Gamma x + e$ where $||e||_{\infty} \le \theta/2$ **Procedure** : $BPDN_{\infty}$

$$\min_{t\in\mathbb{R}^p} \|t\|_1 \text{ s.t.} \|y - \Gamma t\|_{\infty} \le \theta/2$$

Results for BPDN_q from Jacques, Hammond, and Fadili, *Dequantizing* compressed sensing : when oversampling and non-Gaussian constraints combine, when $q \rightarrow \infty$ shows that if

$$n \gtrsim \left(s \log(ep/s)\right)^{q/2}$$

then $(RIP)_{q,2}$ holds with large probability for Gaussian measurements matrices Γ and then for any x

$$\|\hat{x}_{BPDN_q} - x\|_2 \lesssim rac{\sigma_s(x)_1}{\sqrt{s}} + rac{ heta}{\sqrt{q+1}}$$

Theorem (Dirksen, L. and Rauhut)

For Gaussian measurements, when $n \gtrsim s \log(ep/s)$ then

$$\|\hat{x}_{BPDN_{\infty}} - x\|_2 \lesssim rac{\sigma_s(x)_1}{\sqrt{s}} + heta.$$

Moreover, $\hat{x}_{BPDN_{\infty}}$ is quantized consistent : $y = Q_{\theta}(\Gamma \hat{x}_{BPDN_{\infty}})$.

Theorem (Dirksen, L. and Rauhut)

For Gaussian measurements, when $n \gtrsim s \log(ep/s)$ then

$$\|\hat{x}_{BPDN_{\infty}} - x\|_2 \lesssim rac{\sigma_s(x)_1}{\sqrt{s}} + heta.$$

Moreover, $\hat{x}_{BPDN_{\infty}}$ is quantized consistent : $y = Q_{\theta}(\Gamma \hat{x}_{BPDN_{\infty}})$.

For the quantization problem $RIP_{q,2}$ requires more measurements.

Theorem (Dirksen, L. and Rauhut)

For Gaussian measurements, when $n \gtrsim s \log(ep/s)$ then

$$\|\hat{x}_{BPDN_{\infty}} - x\|_2 \lesssim rac{\sigma_s(x)_1}{\sqrt{s}} + heta.$$

Moreover, $\hat{x}_{BPDN_{\infty}}$ is quantized consistent : $y = Q_{\theta}(\Gamma \hat{x}_{BPDN_{\infty}})$.

For the quantization problem $RIP_{q,2}$ requires more measurements. For analysis based on $RIP_{q,r}$: for any $x \in \Sigma_s$

 $c\|x\|_r \leq \|\Gamma x\|_q \leq C\|x\|_r$

two phenomena occur :

- more measurements than $s \log(ep/s)$
- other type of matrices than Gaussian (adjacency matrices, stable processes).

Bypassing the RIP based approach show that none of these two phenomena actually occur : one can use $s \log(ep/s)$ Gaussian measures.

Thanks for your attention

G. Lecué and S. Mendelson, *Sparse recovery under weak moment assumption*. To appear in *Journal of the European Mathematical society*, Jan. 2014.

S. Dirksen, G. Lecué and H. Rauhut, *On the gap between restricted isometry properties and sparse recovery conditions.* To appear in *IEEE Transactions on Information Theory*, March 2015.

Sparse Linear Regression

$$\mathcal{X} = \begin{pmatrix} X_1^\top \\ \vdots \\ X_n^\top \end{pmatrix} \left(= \sqrt{n} \Gamma \right)$$

$$\mathcal{X} = \begin{pmatrix} X_1^\top \\ \vdots \\ X_n^\top \end{pmatrix} \left(= \sqrt{n} \Gamma \right)$$

Aims : Estimation of β^* / denoising of $\mathcal{X}\beta^*$ / prediction of outputs / support recovery.

$$\mathcal{X} = \begin{pmatrix} X_1^\top \\ \vdots \\ X_n^\top \end{pmatrix} \left(= \sqrt{n} \Gamma \right)$$

Aims : Estimation of β^* / denoising of $\mathcal{X}\beta^*$ / prediction of outputs / support recovery.

LASSO :

$$\hat{\beta} \in \operatorname*{argmin}_{x \in \mathbb{R}^p} \left(\frac{1}{n} \|y - \mathcal{X}\beta\|_2^2 + \lambda \|\beta\|_{n,1} \right) \text{ for } \lambda \sim \sigma \sqrt{\frac{\log p}{n}}$$

$$\mathcal{X} = \begin{pmatrix} X_1^\top \\ \vdots \\ X_n^\top \end{pmatrix} \left(= \sqrt{n} \Gamma \right)$$

Aims : Estimation of β^* / denoising of $\mathcal{X}\beta^*$ / prediction of outputs / support recovery.

LASSO :

$$\hat{\beta} \in \operatorname*{argmin}_{x \in \mathbb{R}^p} \left(\frac{1}{n} \|y - \mathcal{X}\beta\|_2^2 + \lambda \|\beta\|_{n,1} \right) \text{ for } \lambda \sim \sigma \sqrt{\frac{\log p}{n}}$$

where

$$\|\beta\|_{n,1} = \sum_{j=1}^{p} r_{n,j} |\beta_j| \text{ and } r_{n,j} = \left(\frac{\mathcal{X}^\top \mathcal{X}}{n}\right)_{jj}$$

Restricted eigenvalue condition : For any $I \subset [p]$ s.t. $|I| \le s, v \in \mathbb{R}^p$ $\|v_{I^c}\|_1 \le 3\|v_I\|_1 \implies \|\Gamma v\|_2 \ge \kappa(s)\|v_I\|_2 \qquad (REC(s))$

Restricted eigenvalue condition : For any $I \subset [p]$ s.t. $|I| \le s, v \in \mathbb{R}^p$ $\|v_{I^c}\|_1 \le 3\|v_I\|_1 \implies \|\Gamma v\|_2 \ge \kappa(s)\|v_I\|_2$ (REC(s)) Remark : (Null space property) $\forall I \subset [p]$ s.t. $|I| \le s, v \in \mathbb{R}^p$

 $\|v_{I^c}\|_1 < \|v_I\|_1 \Rightarrow \|\Gamma v\|_2 > 0$ (NSP(s))

If REC(s) holds and $\|\beta^*\|_0 = s$

If REC(s) holds and $\|\beta^*\|_0 = s$ then with probability larger than $1 - 1/p^{\Box}$, $\|\hat{\beta} - \beta^*\|_1 \lesssim \frac{s\lambda}{\kappa(s)}$. If REC(s) holds and $\|\beta^*\|_0 = s$ then with probability larger than $1 - 1/\rho^{\Box}$, $\|\hat{\beta} - \beta^*\|_1 \lesssim \frac{s\lambda}{\kappa(s)}$.

$$\|\mathcal{X}(\hat{eta}-eta^*)\|_2 \lesssim rac{\sigma^2 s\log p}{\kappa^2(s)}.$$

REC under weak moment assumption

L. & Mendelson

X_1,\ldots,X_n be *n* iid $\sim X = (x_1,\ldots,x_p)^ op$

$$X_1,\ldots,X_n$$
 be *n* iid $\sim X = (x_1,\ldots,x_p)^\top$

- $\exists u_0, \beta_0 \text{ such that } : \forall \|t\|_0 \le s, P[|\langle X, t \rangle| \ge u_0 \|t\|_2] \ge \beta_0$

$$X_1,\ldots,X_n$$
 be *n* iid $\sim X = (x_1,\ldots,x_p)^\top$

- $\Im \exists u_0, \beta_0 \text{ such that } : \forall \|t\|_0 \leq s, P[|\langle X, t \rangle| \geq u_0 \|t\|_2] \geq \beta_0$
- $\ \, \bullet \ \, n \gtrsim \max \left(s \log(ep/s), \log^{(2\eta-1)\vee 1}(wp) \right).$

$$X_1,\ldots,X_n$$
 be *n* iid $\sim X = (x_1,\ldots,x_p)^\top$

$$\exists u_0, \beta_0 \text{ such that } : \forall \|t\|_0 \le s, P[|\langle X, t \rangle| \ge u_0 \|t\|_2] \ge \beta_0$$

•
$$n \gtrsim \max(s \log(ep/s), \log^{(2\eta-1)\vee 1}(wp)).$$

Then, with probability at least $1 - 2 \exp(-c_1 n \beta_0^2) - 1/(w^{\kappa_1} p^{\kappa_1 - 1})$,

$$\Gamma = rac{1}{\sqrt{n}} \left(egin{array}{c} X_1^{ op} \ dots \ X_n^{ op} \end{array}
ight) ext{ satisfies } extsf{REC}(c_1s).$$

$$X_1,\ldots,X_n$$
 be *n* iid $\sim X = (x_1,\ldots,x_p)^\top$

- $\Im \exists u_0, \beta_0 \text{ such that } : \forall \|t\|_0 \le s, P[|\langle X, t \rangle| \ge u_0 \|t\|_2] \ge \beta_0$
- $n \gtrsim \max(s \log(ep/s), \log^{(2\eta-1)\vee 1}(wp)).$ Then, with probability at least $1 - 2 \exp(-c_1 n \beta_0^2) - 1/(w^{\kappa_1} p^{\kappa_1 - 1}),$

$$\Gamma = \frac{1}{\sqrt{n}} \begin{pmatrix} X_1^\top \\ \vdots \\ X_n^\top \end{pmatrix} \text{ satisfies } \frac{REC(c_1s).$$

log p moments is almost necessary

$$X_1,\ldots,X_n$$
 be *n* iid $\sim X = (x_1,\ldots,x_p)^\top$

$$\|x_j\|_{L_2} = 1 \text{ and } \|x_j\|_{L_q} \leq \kappa_0 q^{\eta} \text{ for some } q = \kappa_1 \log(wp).$$

- $\Im \exists u_0, \beta_0 \text{ such that } : \forall \|t\|_0 \le s, P[|\langle X, t \rangle| \ge u_0 \|t\|_2] \ge \beta_0$
- $n \gtrsim \max(s \log(ep/s), \log^{(2\eta-1)\vee 1}(wp)).$ Then, with probability at least $1 - 2 \exp(-c_1 n \beta_0^2) - 1/(w^{\kappa_1} p^{\kappa_1 - 1}),$

$$\Gamma = \frac{1}{\sqrt{n}} \begin{pmatrix} X_1^\top \\ \vdots \\ X_n^\top \end{pmatrix} \text{ satisfies } \frac{REC}{(c_1 s)}.$$

- log p moments is almost necessary
- Ithe same is true for the Compatibility Condition of S. van de Geer

$$X_1,\ldots,X_n$$
 be *n* iid $\sim X = (x_1,\ldots,x_p)^\top$

- $\Im \exists u_0, \beta_0 \text{ such that } : \forall \|t\|_0 \le s, P[|\langle X, t \rangle| \ge u_0 \|t\|_2] \ge \beta_0$
- $n \gtrsim \max(s \log(ep/s), \log^{(2\eta-1)\vee 1}(wp)).$ Then, with probability at least $1 - 2 \exp(-c_1 n \beta_0^2) - 1/(w^{\kappa_1} p^{\kappa_1 - 1}),$

$$\Gamma = \frac{1}{\sqrt{n}} \begin{pmatrix} X_1^\top \\ \vdots \\ X_n^\top \end{pmatrix} \text{ satisfies } \frac{REC(c_1s)}{C(c_1s)}.$$

- log p moments is almost necessary
- Ithe same is true for the Compatibility Condition of S. van de Geer
- the same is true for normalized measurement matrices.

Problem

Given a collection $\{C_j : j \in [p]\}$ of 3-element subsets of [n], does there exists a partition of [n] by elements C_j ?

(This problem is NP-complete = NP and NP-hard)

$x^* \hookrightarrow \text{minimize }_{t \in \mathbb{R}^p} \|t\|_1 \text{ subject to } \Gamma t = \Gamma x.$

is equivalent to the

linear program

Basis pursuit

$$((\mathbf{z}^{+})^{*}, (\mathbf{z}^{-})^{*}) \hookrightarrow \text{minimize}_{\mathbf{z}^{+}, \mathbf{z}^{-} \in \mathbb{R}^{p}} \sum_{j=1}^{N} (z_{j}^{+} + z_{j}^{-})$$

subject to $[\Gamma| - \Gamma] \begin{bmatrix} \mathbf{z}^{+} \\ \mathbf{z}^{-} \end{bmatrix} = \Gamma x, \begin{bmatrix} \mathbf{z}^{+} \\ \mathbf{z}^{-} \end{bmatrix} \ge 0.$

$$x^{\star} = (\mathbf{z}^+)^{\star} - (\mathbf{z}^-)^{\star}$$

Definition

A centrally symmetric polytope $P \subset \mathbb{R}^n$ is said *s*-neighborly if every set of *s* vertices, containing no antipodal pair, is the set of all vertices of some faces of *P*.

Example : ΓB_1^p is *s*-neighborly when : $\forall I \subset [p], |I| \leq s, (\epsilon_i)_{i \in I} \in \{\pm 1\}^I$,

 $\operatorname{aff}(\{\epsilon_i X_i : i \in I\}) \cap \operatorname{conv}(\{\theta_j X_j, j \notin I, \theta_j \in \{\pm 1\}\}) = \emptyset$

• Paley-Zygmund : if $||Z||_{2+\epsilon} \leq \kappa ||Z||_2$,

$$Pig[|Z|\geq (1/2)\|Z\|_2ig]\geq \Big[rac{3\|Z\|_2^2}{4\|Z\|_{2+\epsilon}^2}\Big]^{rac{2+\epsilon}{\epsilon}}\geq \Big[rac{3}{4\kappa}\Big]^{rac{2+\epsilon}{\epsilon}}.$$

2 Einmahl-Mason : if $Z \ge 0$ then for t > 0,

 $P[Z \leq \mathbb{E}Z - t \|Z\|_2] \leq \exp(-ct^2).$

So if $||Z||_2 \le \kappa ||Z||_1$,

 $P[|Z| \ge (1-t)||Z||_2] \ge 1 - \exp(-ct^2).$

Study the small ball probability function

$$\phi(\epsilon) = P[\|X\|_2 \leq \epsilon]$$
 when $\epsilon o 0.$

[Kashin, 1975], [Alon, Goldreich, Hastad, Peralta, 1992], [Devore, 2007], [Nelson, Temlyakov, 2010] $n \gtrsim s^2$

[Kashin, 1975], [Alon, Goldreich, Hastad, Peralta, 1992], [Devore, 2007], [Nelson, Temlyakov, 2010] $n \gtrsim s^2$ [Bourgain, Dilworth, Ford, Konyagin, Kutzarova, 2011] $n \gtrsim s^{2-\epsilon_0}$

[Kashin, 1975], [Alon, Goldreich, Hastad, Peralta, 1992], [Devore, 2007], [Nelson, Temlyakov, 2010] $n \gtrsim s^2$ [Bourgain, Dilworth, Ford, Konyagin, Kutzarova, 2011] $n \gtrsim s^{2-\epsilon_0}$ Still far from the number of mesurements that can be obtained by random matrices : $n \gtrsim s \log(ep/s)$.

32 / 41

$\ell_0\text{-minimization}$ is NP-hard and BP is solved by linear programing but...

 $\ell_0\text{-minimization}$ is NP-hard and BP is solved by linear programing but...

• more measurements : $n \ge 2s$ (for ℓ_0) and $n \ge s \log(ep/s)$ (for ℓ_1).
$\ell_0\text{-minimization}$ is NP-hard and BP is solved by linear programing but...

• more measurements : $n \ge 2s$ (for ℓ_0) and $n \ge s \log(ep/s)$ (for ℓ_1).

 deterministic measurements for l₀ (the first 2s discrete Fourier measurements) to random measurements for l₁.

We prove : for any $t \in \sqrt{s}B_1^p \cap S_2^{p-1}$, $\|\Gamma t\|_2^2 = \frac{1}{n}\sum_{i=1}^n \langle X_i, t \rangle^2 \ge c_0 > 0.$

(1) for any
$$t\in \Sigma_s$$
 : $rac{1}{n}\sum_{i=1}^n ig\langle X_i,tig
angle^2\geq c_0>0.$

• for any
$$t\in \Sigma_s$$
 : $rac{1}{n}\sum_{i=1}^n \langle X_i,t
angle^2\geq c_0>0.$

(small ball property)

• for any
$$t\in \Sigma_s$$
 : $rac{1}{n}\sum_{i=1}^n ig\langle X_i,tig
angle^2\geq c_0>0.$

(small ball property)

• s-sparse vectors to $\sqrt{s}B_1^p \cap S^{p-1}$ via Maurey's representation : write $x \in \sqrt{s}B_1^p \cap S_2^{p-1}$ as a mean of s-sparse vectors

• for any
$$t\in \Sigma_s$$
 : $rac{1}{n}\sum_{i=1}^n \langle X_i,t
angle^2\geq c_0>0.$ (small ball property)

 S-sparse vectors to √sB₁^p ∩ S^{p-1} via Maurey's representation : write x ∈ √sB₁^p ∩ S₂^{p-1} as a mean of s-sparse vectors (log(p) moments)

small ball assumption : $\forall t \in \Sigma_s, P[|\langle X, t \rangle| \ge u_0 \|t\|_2] \ge \beta_0$

small ball assumption : $orall t \in \Sigma_s, P\big[|\langle X,t
angle| \geq u_0 \|t\|_2\big] \geq eta_0$

∜

empirical small ball property : w.h.p. $\forall t \in \Sigma_s$, $|\{i \in \{1, ..., n\}, |\langle X_i, t \rangle| \ge u_0 ||t||_2\}| \ge \frac{\beta_0 n}{2}.$ small ball assumption $: \forall t \in \Sigma_s, P[|\langle X, t \rangle| \ge u_0 \|t\|_2] \ge \beta_0$

∜

empirical small ball property : w.h.p. $\forall t \in \Sigma_s$, $\left|\{i \in \{1, ..., n\}, |\langle X_i, t \rangle| \ge u_0 ||t||_2\}\right| \ge \frac{\beta_0 n}{2}.$

when $n \gtrsim s \log(ep/s)$.

small ball assumption
$$: \forall t \in \Sigma_s, P[|\langle X, t \rangle| \ge u_0 \|t\|_2] \ge \beta_0$$

∜

empirical small ball property : w.h.p.
$$\forall t \in \Sigma_s$$
,
 $|\{i \in \{1, ..., n\}, |\langle X_i, t \rangle| \ge u_0 ||t||_2\}| \ge \frac{\beta_0 n}{2}.$

when $n \gtrsim s \log(ep/s)$. For any $t \in \Sigma_s$:

$$\frac{1}{n}\sum_{i=1}^{n} \langle X_i, t \rangle^2 \geq \frac{1}{n}\sum_{i=1}^{n} u_0^2 \|t\|_2^2 l\big(|\langle X_i, t \rangle| \geq u_0 \|t\|_2\}\big) \geq u_0^2 \|t\|_2^2 \frac{\beta_0}{2}.$$

small ball assumption
$$: \forall t \in \Sigma_s, P[|\langle X, t \rangle| \ge u_0 \|t\|_2] \ge \beta_0$$

₩

empirical small ball property : w.h.p.
$$\forall t \in \Sigma_s$$
,
 $|\{i \in \{1, ..., n\}, |\langle X_i, t \rangle| \ge u_0 ||t||_2\}| \ge \frac{\beta_0 n}{2}.$

when $n \gtrsim s \log(ep/s)$. For any $t \in \Sigma_s$:

$$\frac{1}{n}\sum_{i=1}^{n} \langle X_i, t \rangle^2 \geq \frac{1}{n}\sum_{i=1}^{n} u_0^2 \|t\|_2^2 l(|\langle X_i, t \rangle| \geq u_0 \|t\|_2\}) \geq u_0^2 \|t\|_2^2 \frac{\beta_0}{2}.$$

[Mendelson, Koltchinskii] under moment assumptions.

Let $\Gamma : \mathbb{R}^{p} \mapsto \mathbb{R}^{n}$ such that

• for any $t \in \Sigma_s \cap S_2^{p-1} : \|\Gamma t\|_2 \ge \kappa_0$,

Let $\Gamma : \mathbb{R}^{p} \mapsto \mathbb{R}^{n}$ such that

- for any $t \in \Sigma_s \cap S_2^{p-1}$: $\|\Gamma t\|_2 \ge \kappa_0$,

Let $\Gamma : \mathbb{R}^{p} \mapsto \mathbb{R}^{n}$ such that

- for any $t \in \Sigma_s \cap S_2^{p-1} : \|\Gamma t\|_2 \ge \kappa_0$,
- 2 $\|\Gamma e_j\|_2 \le c_0, \forall 1 \le j \le p$ (where (e_1, \ldots, e_p) is the canonical basis)

Then, for any $t \in \sqrt{c_1 s} B_1^p \cap S_2^{p-1}$, $\|\Gamma t\|_2 \ge c_2 > 0$.

Let $\Gamma : \mathbb{R}^{p} \mapsto \mathbb{R}^{n}$ such that

- for any $t \in \Sigma_s \cap S_2^{p-1} : \|\Gamma t\|_2 \ge \kappa_0$,
- 2 $\|\Gamma e_j\|_2 \le c_0, \forall 1 \le j \le p$ (where (e_1, \ldots, e_p) is the canonical basis)

Then, for any $t \in \sqrt{c_1 s} B_1^p \cap S_2^{p-1}$, $\|\Gamma t\|_2 \ge c_2 > 0$.

The uniform control $\max_{1 \le j \le p} \|\Gamma e_j\|_2 \le c_0 \text{ costs } \log(p)$ moments.

For every (n, s), n : number of measurements s : sparsity

For every (n, s), **n** : number of measurements **s** : sparsity \star Construct 20 *s*-sparse vectors $x \in \mathbb{R}^{200}$.

- For every (n, s),
- n : number of measurements
- \mathbf{s} : sparsity
- ★ Construct 20 *s*-sparse vectors $x \in \mathbb{R}^{200}$.
- \star Run Basis Pursuit \hat{x}_{BP} using $\langle X_i, x \rangle, i = 1, \dots, n$

- For every (n, s),
- n : number of measurements
- \mathbf{s} : sparsity
- ★ Construct 20 *s*-sparse vectors $x \in \mathbb{R}^{200}$.
- \star Run Basis Pursuit \hat{x}_{BP} using $\langle X_i, x \rangle, i = 1, \dots, n$
- * Check if $||x \hat{x}_{BP}||_2 \le 0.01$.

- For every (n, s),
- n : number of measurements
- s : sparsity
- ★ Construct 20 *s*-sparse vectors $x \in \mathbb{R}^{200}$.
- * Run Basis Pursuit \hat{x}_{BP} using $\langle X_i, x \rangle, i = 1, ..., n$
- * Check if $||x \hat{x}_{BP}||_2 \le 0.01$.
 - black pixel = 20 "exact" recovery (0 mistakes)

- For every (n, s),
- n : number of measurements
- s : sparsity
- ★ Construct 20 *s*-sparse vectors $x \in \mathbb{R}^{200}$.
- * Run Basis Pursuit \hat{x}_{BP} using $\langle X_i, x \rangle, i = 1, ..., n$
- * Check if $||x \hat{x}_{BP}||_2 \le 0.01$.
 - black pixel = 20 "exact" recovery (0 mistakes)
 - red pixel = 0 exact recovery (20 mistakes).

- For every (n, s),
- n : number of measurements
- s : sparsity
- ★ Construct 20 *s*-sparse vectors $x \in \mathbb{R}^{200}$.
- * Run Basis Pursuit \hat{x}_{BP} using $\langle X_i, x \rangle, i = 1, \dots, n$
- * Check if $||x \hat{x}_{BP}||_2 \le 0.01$.
 - black pixel = 20 "exact" recovery (0 mistakes)
 - red pixel = 0 exact recovery (20 mistakes).

Theoretical phase transition $n \sim s \log(ep/s)$.

Gaussian measurements

Cauchy measurements

log(ep/s) moments may be necessary (?)

Smallest singular value of a random matrix

 X_1,\ldots,X_n iid vectors in \mathbb{R}^p such that $n \geq p$,

 X_1, \ldots, X_n iid vectors in \mathbb{R}^p such that $n \geq p$, we have

$$\inf_{\|t\|_2=1}\frac{1}{n}\sum_{i=1}^n \langle X_i,t\rangle^2 \geq c_0 > 0$$

 X_1, \ldots, X_n iid vectors in \mathbb{R}^p such that $n \geq p$, we have

$$\inf_{\|t\|_{2}=1}\frac{1}{n}\sum_{i=1}^{n}\langle X_{i},t\rangle^{2}\geq c_{0}>0$$

• in expectation : [Srivastava, Vershynin, 2012] X is isotropic and $\sup_{\|t\|_2=1} \mathbb{E}|\langle X,t\rangle|^{2+\epsilon} \leq c_1.$

 X_1, \ldots, X_n iid vectors in \mathbb{R}^p such that $n \geq p$, we have

$$\inf_{\|t\|_{2}=1}\frac{1}{n}\sum_{i=1}^{n}\langle X_{i},t\rangle^{2}\geq c_{0}>0$$

• in expectation : [Srivastava, Vershynin, 2012] X is isotropic and $\sup_{\|t\|_2=1}\mathbb{E}|\langle X,t\rangle|^{2+\epsilon}\leq c_1.$

② with probability larger than $1 - \exp(-c_2 n)$ in [Koltchinksii, Mendelson] when X is isotropic and for every $t \in \mathbb{R}^p$,

 $\|\langle t,X\rangle\|_{L_2}\leq c_3\|\langle t,X\rangle\|_{L_1}.$

 X_1, \ldots, X_n iid vectors in \mathbb{R}^p such that $n \geq p$, we have

$$\inf_{\|t\|_{2}=1}\frac{1}{n}\sum_{i=1}^{n}\langle X_{i},t\rangle^{2}\geq c_{0}>0$$

• in expectation : [Srivastava, Vershynin, 2012] X is isotropic and $\sup_{\|t\|_2=1} \mathbb{E}|\langle X,t\rangle|^{2+\epsilon} \leq c_1.$

2 with probability larger than $1 - \exp(-c_2 n)$ in [Koltchinksii, Mendelson] when X is isotropic and for every $t \in \mathbb{R}^p$,

$$\|\langle t,X\rangle\|_{L_2}\leq c_3\|\langle t,X\rangle\|_{L_1}.$$

With probability larger than 1 − exp(−c₂n) in [L., Mendelson] when for every t ∈ ℝ^p,

$$P\big[|\langle t,X\rangle|\geq u_0\|t\|_2\big]\geq\beta_0.$$

 X_1, \ldots, X_n iid vectors in \mathbb{R}^p such that $n \geq p$, we have

$$\inf_{\|t\|_2=1}\frac{1}{n}\sum_{i=1}^n \langle X_i,t\rangle^2 \ge c_0 > 0$$

• in expectation : [Srivastava, Vershynin, 2012] X is isotropic and $\sup_{\|t\|_2=1} \mathbb{E}|\langle X,t\rangle|^{2+\epsilon} \leq c_1.$

2 with probability larger than $1 - \exp(-c_2 n)$ in [Koltchinksii, Mendelson] when X is isotropic and for every $t \in \mathbb{R}^p$,

$$\|\langle t,X\rangle\|_{L_2}\leq c_3\|\langle t,X\rangle\|_{L_1}.$$

With probability larger than 1 − exp(−c₂n) in [L., Mendelson] when for every t ∈ ℝ^p,

$$P\big[|\langle t,X\rangle|\geq u_0\|t\|_2\big]\geq\beta_0.$$

 \Rightarrow Lower bound on the smallest singular value has nothing to do with concentration (true for Cauchy matrices).