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`0-minimization is NP-hard

`0-minimization procedure

minimize ‖t‖0 subject to
〈
Xi , t

〉
=
〈
Xi , x

〉
, i = 1, . . . , n.

argmin
(
‖t‖0 : Γt = Γx

)
= {x} for any ‖x‖0 ≤ s.

⇔

X>1 /
√

n

· · ·

X>n /
√

n

Γ = ΓI

|I | = 2s

kerΓI = {0},∀|I | = 2s

1 n ≥ 2s is the minimal number of measurements.
2 Γ = the 2s first Fourier basis vectors
3 Natarajan, 1995 : `0-minimization is NP-hard (solves the “exact

cover by 3-sets problem”).
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convex relaxation : `1-minimization = basis pursuit algorithm

Basis pursuit – [Logan, 1965], [Donoho, Logan, 1992], [...]

minimize ‖t‖1 subject to
〈
Xi , t

〉
=
〈
Xi , x

〉
, i = 1, . . . , n.

BP can be recasted to a linear programming

Definition

We say that Γ = n−1/2
∑n

i=1

〈
Xi , ·

〉
ei satisfies the exact reconstruction

property of order s when :

for any ‖x‖0 ≤ s, argmin
(
‖t‖1 : Γt = Γx

)
= {x} (ER(s))

Proposition : Γ satisfies ER(s) ⇒ n & s log(ep/s)

Question : construction of Γ satisfying ER(s) with n ∼ s log(ep/s).
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caracterization of the Exact Reconstruction property

RIP(c0s) : for any ‖x‖0 ≤ c0s, 1
2‖x‖2 ≤ ‖Γx‖2 ≤ 3

2‖x‖2.

[Candès & Romberg & Tao , 05, 06]

⇓
for any x ∈ √c1sBp

1 ∩ Sp−1
2 , ‖Γx‖2 > 0

[Kashin & Temlyakov , 07]

⇓
NSP(s) : for any h ∈ kerΓ\{0}, |I | ≤ s, ‖hI‖1 < ‖hI c‖1

[Donoho , Elad , Huo , 01, 03]

m

ER(s) for any ‖x‖0 ≤ s, argmin
(
‖t‖1 : Γt = Γx

)
= {x}

(⇔ ΓBp
1 is s − neighborly, [Donoho, 05])

(⇐ Incoherency conditions)
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Random measurements

Random matrix

So far, only random matrices satisfy ER(s) with n ∼ s log
(
ep/s

)
(with

large probability).

Examples :

1 Independent, isotropic (i.e. E
〈
X , t

〉2
= ‖t‖2

2) and subgaussian (i.e.

P[|
〈
X , t

〉
| ≥ u‖t‖2] ≤ 2 exp(−c0u2)) rows : RIP(s) is satisfied when

n ∼ s log(ep/s) [Candès, Tao, Vershynin, Rudelson, Mendelson,
Pajor, Tomjack-Jaegermann].

2 independent log-concave rows or independent sub-exponential
columns satisfy RIP(s) when n ∼ s log2(ep/s) [Adamczack, Latala,
Litvak, Pajor, Tomjack-Jaegermann].

3 Structured matrices : partial Fourier matrices satisfy RIP(s)
[Rudelson, Vershynin, Candès, Tao, Bourgain] when n & s log3(p).
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What property of randomness is used for exact reconstruction ? concentration ?

Can we take “Cauchy measurements” (density ∝ (1 + x2)−1) ?

X = (x1, . . . , xp) where xi are ind. Cauchy variables

and still get the same properties as for “Gaussian measurements”?

Here : we will need log p moments for the coordinates xj ’s.
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What property of randomness is used for exact reconstruction ? concentration ?

1 Let Γ = n−1/2(eij) ∈ Rn×p where eij are iid symmetric exponential.

If Γ satisfies RIP(s) with probability at least 1/2 then

n & s log2
(
ep/s

)
.

[Adamczack, Latala, Litvak, Pajor, Tomjack-Jaegermann]

2 If Γ has independent isotropic sub-exponential rows then it satisfies
ER(s) with large probability when

n & s log
(
ep/s

)
.

[Koltchinksii] and [Foucart and Lai]

Exact reconstruction under weak concentration property cannot be
studied via RIP
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A weaker condition than RIP

Proposition (L. and Mendelson)

Let Γ : Rp 7→ Rn such that

1 for any ‖t‖0 ≤ s : ‖Γt‖2 ≥ κ0‖t‖2,

2 ‖Γej‖2 ≤ c0,∀1 ≤ j ≤ p (where (e1, . . . , ep) is the canonical basis)

Then, ∀t ∈ √c1sBp
1 ∩ Sp−1

2 , ‖Γt‖2 ≥ c2 > 0 and so ER(s) holds.
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Comparison with RIP

∀‖t‖0 ≤ s,
1

2
‖t‖2 ≤ ‖Γt‖2 ≤

3

2
‖t‖2

1 ∀‖t‖0 ≤ s ‖Γt‖2 ≥ κ0‖t‖2,

2 max1≤j≤p ‖Γej‖2 ≤ c0.

Both implies Exact reconstruction ER(s).

LHS of RIP is implied by the small ball property : “no cost”

RHS of RIP requires deviation (ψ2).
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LHS of RIP is implied by the small ball property : “no cost”

RHS of RIP requires deviation (ψ2).
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deviation and moments - the first assumption

1 Z is subgaussian (ψ2) ⇔ ‖Z‖Lq .
√

q for all q’s

2 Z is subexponential (ψ1) ⇔ ‖Z‖Lq . q for all q’s

3 Z is ψα ⇔ ‖Z‖Lq . q1/α for all q’s

Here, we assume that the measurement vector X = (x1, . . . , xp) ∈ Rp is
such that : ‖xj‖L2 = 1 and

‖xj‖Lq ≤ κ0qη, for q ∼ log(p)

for some η ≥ 1/2.
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Small ball property - the second assumption. [Mendelson], [Koltchinskii, Mendelson]

There exists two constants u0, β0 such that : ∀‖t‖0 ≤ s,

P
[
|
〈
X , t

〉
| ≥ u0‖t‖2

]
≥ β0

Examples :

1) if X is isotropic (E
〈
X , t

〉2
= ‖t‖2

2) and for all ‖t‖0 ≤ s,

‖
〈
X , t

〉
‖L2+ε

≤ κ0‖
〈
X , t

〉
‖L2

for some ε > 0.

2) if X is isotropic and for all ‖t‖0 ≤ s,

‖
〈
X , t

〉
‖L2 ≤ κ0‖

〈
X , t

〉
‖L1 .

12 / 41



Small ball property - the second assumption. [Mendelson], [Koltchinskii, Mendelson]

There exists two constants u0, β0 such that : ∀‖t‖0 ≤ s,

P
[
|
〈
X , t

〉
| ≥ u0‖t‖2

]
≥ β0

Examples :

1) if X is isotropic (E
〈
X , t

〉2
= ‖t‖2

2) and for all ‖t‖0 ≤ s,

‖
〈
X , t

〉
‖L2+ε

≤ κ0‖
〈
X , t

〉
‖L2

for some ε > 0.

2) if X is isotropic and for all ‖t‖0 ≤ s,

‖
〈
X , t

〉
‖L2 ≤ κ0‖

〈
X , t

〉
‖L1 .

12 / 41



Small ball property - the second assumption. [Mendelson], [Koltchinskii, Mendelson]

There exists two constants u0, β0 such that : ∀‖t‖0 ≤ s,

P
[
|
〈
X , t

〉
| ≥ u0‖t‖2

]
≥ β0

Examples :

1) if X is isotropic (E
〈
X , t

〉2
= ‖t‖2

2) and for all ‖t‖0 ≤ s,

‖
〈
X , t

〉
‖L2+ε

≤ κ0‖
〈
X , t

〉
‖L2

for some ε > 0.

2) if X is isotropic and for all ‖t‖0 ≤ s,

‖
〈
X , t

〉
‖L2 ≤ κ0‖

〈
X , t

〉
‖L1 .

12 / 41



Small ball property - the second assumption. [Mendelson], [Koltchinskii, Mendelson]

There exists two constants u0, β0 such that : ∀‖t‖0 ≤ s,

P
[
|
〈
X , t

〉
| ≥ u0‖t‖2

]
≥ β0

Examples :

1) if X is isotropic (E
〈
X , t

〉2
= ‖t‖2

2) and for all ‖t‖0 ≤ s,

‖
〈
X , t

〉
‖L2+ε

≤ κ0‖
〈
X , t

〉
‖L2

for some ε > 0.

2) if X is isotropic and for all ‖t‖0 ≤ s,

‖
〈
X , t

〉
‖L2 ≤ κ0‖

〈
X , t

〉
‖L1 .

12 / 41



Small ball property - other examples from [RV13]

[RV13] : “Small ball probabilities for linear images of high dimensional
distributions” M. Rudelson and R. Vershynin.

3) X = (x1, . . . , xp) with independent absolutly continous coordinates
with density bounded by K a.s. then for any t ∈ Rp,

P
[∣∣〈X , t〉∣∣ ≥ (4

√
2K )−1‖t‖2

]
≥ 1

2
.

(For example, a Cauchy measurement vector satisfies the small ball
property).

4) X = (x1, . . . , xp) with independent coordinates such that

L(xi , t0) := sup
u∈R

P[|xi − u| ≤ t0] ≤ p0

for some t0, p0 > 0. then for any t ∈ Rp,

P
[∣∣〈X , t〉∣∣ ≥ t0‖t‖2

]
≥ 1− c0p0.
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Theorem (L. & Mendelson)

Let X1, . . . ,Xn be n iid ∼ X = (x1, . . . , xp)> random variables in Rp s.t. :

1 ‖xj‖L2 = 1 and for some η ≥ 1/2 and q = κ1 log(wp) :

‖xj‖Lq ≤ κ0qη,

2 there exists u0, β0 such that : ∀t, ‖t‖0 ≤ s,

P
[
|
〈
X , t

〉
| ≥ u0‖t‖2

]
≥ β0

3 n & s log(ep/s).

Then, with probability at least 1− 2 exp(−c1nβ2
0)− 1/(wκ1 pκ1−1),

Γ =
1√
n

 X>1
...

X>n

 satisfies ER(c2u2
0β0s).
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log p moments are almost necessary

Theorem (L. & Mendelson)

There exists a real-valued random variable x such that

1 Ex = 0, Ex2 = 1, Ex4 . 1

2 ‖x‖Lq .
√

q for q ∼ (log p)/ log log p

for which if xij are iid∼ x, for n ∼ log p then

Γ = n−1/2
(
xij : 1 ≤ i ≤ n, 1 ≤ j ≤ p

)
,

Γ does not satisfy the ER(1) with probability at least 1/2.

⇒ We need at least log p/ log log p moments for exact reconstruction via
basis pursuit.

15 / 41



log p moments are almost necessary

Theorem (L. & Mendelson)

There exists a real-valued random variable x such that

1 Ex = 0, Ex2 = 1, Ex4 . 1

2 ‖x‖Lq .
√

q for q ∼ (log p)/ log log p

for which if xij are iid∼ x, for n ∼ log p then

Γ = n−1/2
(
xij : 1 ≤ i ≤ n, 1 ≤ j ≤ p

)
,

Γ does not satisfy the ER(1) with probability at least 1/2.

⇒ We need at least log p/ log log p moments for exact reconstruction via
basis pursuit.

15 / 41



log p moments are almost necessary

Theorem (L. & Mendelson)

There exists a real-valued random variable x such that

1 Ex = 0, Ex2 = 1, Ex4 . 1

2 ‖x‖Lq .
√

q for q ∼ (log p)/ log log p

for which if xij are iid∼ x, for n ∼ log p then

Γ = n−1/2
(
xij : 1 ≤ i ≤ n, 1 ≤ j ≤ p

)
,

Γ does not satisfy the ER(1) with probability at least 1/2.

⇒ We need at least log p/ log log p moments for exact reconstruction via
basis pursuit.

15 / 41



log p moments are almost necessary

Theorem (L. & Mendelson)

There exists a real-valued random variable x such that

1 Ex = 0, Ex2 = 1, Ex4 . 1

2 ‖x‖Lq .
√

q for q ∼ (log p)/ log log p

for which if xij are iid∼ x, for n ∼ log p then

Γ = n−1/2
(
xij : 1 ≤ i ≤ n, 1 ≤ j ≤ p

)
,

Γ does not satisfy the ER(1) with probability at least 1/2.

⇒ We need at least log p/ log log p moments for exact reconstruction via
basis pursuit.

15 / 41



phase transition diagram for Exponential and Student variables.

ψγ variables sign(g)|g |2/γ where
g ∼ N (0, 1)

Student variables of degree k
density ∼ (1 + t2)−(k+1)/2

16 / 41



A price to pay for convex relaxation

Theorem (L. & Mendelson)

Let X1, . . . ,Xn be n iid ∼ X random variables in Rp s.t. :

1 there exists u0, β0 such that : ∀t, ‖t‖0 ≤ s,

P
[
|
〈
X , t

〉
| ≥ u0‖t‖2

]
≥ β0

2 n & s log(ep/s).

Then, with probability at least 1− 2 exp(−c1nβ2
0),

Γ =
1√
n

 X>1
...

X>n

 .

is such that for any ‖x‖0 ≤ s, argmin
(
‖t‖0 : Γt = Γx

)
= {x}.

⇒ We don’t need moment assumption for `0 −minimization. This proves
that there is a price to pay in terms of concentration for convex
relaxation.
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conclusion and comments for the exact reconstruction problem

1 Exact reconstruction via Basis Pursuit for random linear
measurements under log p moments is possible with the same
number of measurements as in the Gaussian case.

2 RIP needs ψ2-concentration (and thus may not be the “optimal” way
to prove exact reconstruction)

3 the property of randomness that looks “important” for exact
reconstruction of s-sparse vectors : ∀‖t‖0 ≤ s,

P
[
|
〈
X , t

〉
| ≥ u0‖t‖2

]
≥ β0.

4 log p/ log log p moments is a necessary price to pay for convex
relaxation.
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Application to quantized CS

Data : y = Qθ(Γx) where Qθ : Rm → (θZ + θ/2)m.

”Model” : y = Γx + e where ‖e‖∞ ≤ θ/2
Procedure : BPDN∞

min
t∈Rp
‖t‖1 s.t.‖y − Γt‖∞ ≤ θ/2

Results for BPDNq from Jacques, Hammond, and Fadili, Dequantizing
compressed sensing : when oversampling and non-Gaussian constraints
combine, when q →∞ shows that if

n &
(

s log(ep/s)
)q/2

then (RIP)q,2 holds with large probability for Gaussian measurements
matrices Γ and then for any x

‖x̂BPDNq − x‖2 .
σs(x)1√

s
+

θ√
q + 1
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matrices Γ and then for any x

‖x̂BPDNq − x‖2 .
σs(x)1√

s
+

θ√
q + 1
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Application to quantized CS

Theorem (Dirksen, L. and Rauhut)

For Gaussian measurements, when n & s log(ep/s) then

‖x̂BPDN∞ − x‖2 .
σs(x)1√

s
+ θ.

Moreover, x̂BPDN∞ is quantized consistent : y = Qθ(Γx̂BPDN∞).

For the quantization problem RIPq,2 requires more measurements.
For analysis based on RIPq,r : for any x ∈ Σs

c‖x‖r ≤ ‖Γx‖q ≤ C‖x‖r
two phenomena occur :

1 more measurements than s log(ep/s)
2 other type of matrices than Gaussian (adjacency matrices, stable

processes).

Bypassing the RIP based approach show that none of these two
phenomena actually occur : one can use s log(ep/s) Gaussian measures.
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Thanks for your attention

G. Lecué and S. Mendelson, Sparse recovery under weak moment
assumption. To appear in Journal of the European Mathematical society,
Jan. 2014.

S. Dirksen, G. Lecué and H. Rauhut, On the gap between restricted
isometry properties and sparse recovery conditions. To appear in IEEE
Transactions on Information Theory, March 2015.

21 / 41



Sparse Linear Regression
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Noisy data - LASSO

Data : y = Xβ∗ + σW where W ∼ Np(0, In) and

X =

 X>1
...

X>n

( =
√

nΓ
)

Aims : Estimation of β∗ / denoising of Xβ∗ / prediction of outputs /
support recovery.

LASSO :

β̂ ∈ argmin
x∈Rp

(1

n
‖y −Xβ‖2

2 + λ‖β‖n,1
)

for λ ∼ σ
√

log p

n

where

‖β‖n,1 =

p∑
j=1

rn,j |βj | and rn,j =
(X>X

n

)
jj
.
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Restricted eigenvalue condition - [Bickel, Ritov, Tsybakov, 2007]

Restricted eigenvalue condition : For any I ⊂ [p] s.t. |I | ≤ s, v ∈ Rp

‖vI c‖1 ≤ 3‖vI‖1 ⇒ ‖Γv‖2 ≥ κ(s)‖vI‖2 (REC (s))

Remark : (Null space property) ∀I ⊂ [p] s.t. |I | ≤ s, v ∈ Rp

‖vI c‖1 < ‖vI‖1 ⇒ ‖Γv‖2 > 0 (NSP(s))
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Estimation under REC via the LASSO - [BRT,07]

If REC(s) holds and ‖β∗‖0 = s

then with probability larger than
1− 1/p�,

‖β̂ − β∗‖1 .
sλ

κ(s)
.

and

‖X (β̂ − β∗)‖2 .
σ2s log p

κ2(s)
.
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REC under weak moment assumption

L. & Mendelson

X1, . . . ,Xn be n iid ∼ X = (x1, . . . , xp)>

1 ‖xj‖L2 = 1 and ‖xj‖Lq ≤ κ0qη for some q = κ1 log(wp).

2 ∃u0, β0 such that : ∀‖t‖0 ≤ s,P
[
|
〈
X , t

〉
| ≥ u0‖t‖2

]
≥ β0

3 n & max
(
s log(ep/s), log(2η−1)∨1(wp)

)
.

Then, with probability at least 1− 2 exp(−c1nβ2
0)− 1/(wκ1 pκ1−1),

Γ =
1√
n

 X>1
...

X>n

 satisfies REC (c1s).

1 log p moments is almost necessary

2 the same is true for the Compatibility Condition of S. van de Geer

3 the same is true for normalized measurement matrices.
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Exact cover by 3-sets problem

Problem

Given a collection {Cj : j ∈ [p]} of 3-element subsets of [n], does there
exists a partition of [n] by elements Cj ?

(This problem is NP-complete = NP and NP-hard)
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recasting basis pursuit to a linear program

Basis pursuit

x? ↪→ minimize t∈Rp‖t‖1 subject to Γt = Γx .

is equivalent to the

linear program

(
(z+)?, (z−)?

)
↪→minimize z+,z−∈Rp

N∑
j=1

(z+
j + z−j )

subject to
[
Γ| − Γ

] [ z+

z−

]
= Γx ,

[
z+

z−

]
≥ 0.

x? = (z+)? − (z−)?
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s-neighborly polytope

Definition

A centrally symmetric polytope P ⊂ Rn is said s-neighborly if every set of
s vertices, containing no antipodal pair, is the set of all vertices of some
faces of P.

Example : ΓBp
1 is s-neighborly when : ∀I ⊂ [p], |I | ≤ s, (εi )i∈I ∈ {±1}I ,

aff({εiXi : i ∈ I}) ∩ conv({θjXj , j /∈ I , θj ∈ {±1}}) = ∅
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Paley-Zygmund and Einmahl-Masson inequalities

1 Paley-Zygmund : if ‖Z‖2+ε ≤ κ‖Z‖2,

P
[
|Z | ≥ (1/2)‖Z‖2

]
≥
[ 3‖Z‖2

2

4‖Z‖2
2+ε

] 2+ε
ε ≥

[ 3

4κ

] 2+ε
ε

.

2 Einmahl-Mason : if Z ≥ 0 then for t > 0,

P[Z ≤ EZ − t‖Z‖2] ≤ exp(−ct2).

So if ‖Z‖2 ≤ κ‖Z‖1,

P[|Z | ≥ (1− t)‖Z‖2] ≥ 1− exp(−ct2).

30 / 41



Classical “small ball problem” - [Kuelbs, Li]

Study the small ball probability function

φ(ε) = P[‖X‖2 ≤ ε] when ε→ 0.
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Construction of deterministic matrices satisfying RIP

[Kashin, 1975], [Alon, Goldreich, Hastad, Peralta, 1992], [Devore,
2007], [Nelson, Temlyakov, 2010] n & s2

[Bourgain, Dilworth, Ford, Konyagin, Kutzarova, 2011] n & s2−ε0

Still far from the number of mesurements that can be obtained by
random matrices : n & s log(ep/s).
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The price to pay from `0 to `1

`0-minimization is NP-hard and BP is solved by linear programing but...

more measurements : n ≥ 2s (for `0) and n & s log(ep/s) (for `1).

deterministic measurements for `0 (the first 2s discrete Fourier
measurements) to random measurements for `1.
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Proof 1/4

We prove : for any t ∈
√

sBp
1 ∩ Sp−1

2 ,

‖Γt‖2
2 =

1

n

n∑
i=1

〈
Xi , t

〉2 ≥ c0 > 0.

√
sBp

1

Sp−1
2

{t ∈ Sp−1
2 : ‖t‖0 ≤ s} = Σs
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Proof 2/4 – two steps

1 for any t ∈ Σs :

1

n

n∑
i=1

〈
Xi , t

〉2 ≥ c0 > 0.

(small ball property)

2 s-sparse vectors to
√

sBp
1 ∩ Sp−1 via Maurey’s representation :

write x ∈
√

sBp
1 ∩ Sp−1

2 as a mean of s-sparse vectors

(log(p) moments)
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Proof 3/4 – lower bound on the smallest singular value

small ball assumption :∀t ∈ Σs ,P
[
|
〈
X , t

〉
| ≥ u0‖t‖2

]
≥ β0

⇓

empirical small ball property : w.h.p.∀t ∈ Σs ,∣∣{i ∈ {1, . . . , n}, |〈Xi , t
〉
| ≥ u0‖t‖2}

∣∣ ≥ β0n

2
.

when n & s log(ep/s). For any t ∈ Σs :

1

n

n∑
i=1

〈
Xi , t

〉2 ≥ 1

n

n∑
i=1

u2
0‖t‖2

2I
(
|
〈
Xi , t

〉
| ≥ u0‖t‖2}

)
≥ u2

0‖t‖2
2

β0

2
.

[Mendelson, Koltchinskii] under moment assumptions.
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Proof 3/4 – s-sparse vectors to
√

sBp
1 ∩ Sp−1

2 via Maurey’s method

Proposition

Let Γ : Rp 7→ Rn such that

1 for any t ∈ Σs ∩ Sp−1
2 : ‖Γt‖2 ≥ κ0,

2 ‖Γej‖2 ≤ c0,∀1 ≤ j ≤ p (where (e1, . . . , ep) is the canonical basis)

Then, for any t ∈ √c1sBp
1 ∩ Sp−1

2 , ‖Γt‖2 ≥ c2 > 0.

The uniform control max1≤j≤p ‖Γej‖2 ≤ c0 costs log(p) moments.
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phase transition diagram for Gaussian measurements.

For every (n, s),
n : number of measurements
s : sparsity

? Construct 20 s-sparse vectors
x ∈ R200.
? Run Basis Pursuit x̂BP using〈
Xi , x

〉
, i = 1, . . . , n

? Check if ‖x − x̂BP‖2 ≤ 0.01.

1 black pixel = 20 “exact”
recovery (0 mistakes)

2 red pixel = 0 exact recovery
(20 mistakes).

Theoretical phase transition n ∼ s log(ep/s).
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phase transition diagram for Gaussian and Cauchy measurements.

Gaussian measurements Cauchy measurements

log(ep/s) moments may be necessary ( ?)
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Smallest singular value of a random matrix
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proportional case (s = n & p) = lower bound on the smallest singular value

X1, . . . ,Xn iid vectors in Rp such that n & p,

we have

inf
‖t‖2=1

1

n

n∑
i=1

〈
Xi , t

〉2 ≥ c0 > 0

1 in expectation : [Srivastava, Vershynin, 2012] X is isotropic and

sup
‖t‖2=1

E|
〈
X , t

〉
|2+ε ≤ c1.

2 with probability larger than 1− exp(−c2n) in [Koltchinksii,
Mendelson] when X is isotropic and for every t ∈ Rp,

‖
〈
t,X

〉
‖L2 ≤ c3‖

〈
t,X

〉
‖L1 .

3 with probability larger than 1− exp(−c2n) in [L., Mendelson] when
for every t ∈ Rp,

P
[
|
〈
t,X

〉
| ≥ u0‖t‖2

]
≥ β0.

⇒ Lower bound on the smallest singular value has nothing to do with
concentration (true for Cauchy matrices).
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