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Neurons

• Neurons : generate and propagate action potentials the long of
their axons.

• They communicate by transmitting spikes : this is a fast
transmembrane current of K+/Na+−ions, stimulated by ion
pumps.
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The emission of spikes depends on external stimuli. Picture shows
the membrane potential of one single neuron, under increasing
concentration of potassium.

Figure: Cortical slice of an active network of O(104) neurons, Picture
by R. Höpfner and H. Luhmann, Mainz
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Closer look to spikes

The shape and the time duration of spikes is almost deterministic -
and always “the same” (for a fixed neuron, under the same
experimental conditions)

Figure: Picture by R. Höpfner, Mainz
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The next picture is by Jahn, Berg, Hounsgaard, Ditlevsen, 2011. It
also shows that spikes do not appear when the membrane
potential hits a fixed threshold...

Figure: Picture in Jahn et al. 2011
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• The duration of each spike is very short (about 1 ms) - followed
by a refractory period during which the neuron can not spike again
(about 1 ms).

• Since shape of spike almost deterministic → report if at a given
time there is presence or absence of a spike → spike trains.

• Allows to encode the interactions between neurons.

• Can be done in discrete or continuous time (in this talk : mostly,
continuous time).
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Spike trains

Figure: Spike trains of several neurons - Picture by W. Maass
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Why should a mathematician be interested in all this ? ? ?

On the level of a single neuron :

• What is exactly a spike ?

• What is a good model for the spike generation ?
→ Dynamical systems : Hodgkin-Huxley, Fitzhugh-Nagumo,
Integrate-and-Fire diffusion models

See : Berglund and Landon (2012), Berglund and Kuehn (2016),
Ditlevsen and Greenwood (2013), Hodgkin and Huxley (1952) :
Nobel price, Höpfner, L., Thieullen : On the stochastic
Hodgkin-Huxley model (2014-2016), Izhikevich : Dynamical
Systems in Neuroscience (2007), Riedler and Buckwar (2013). And
many others.
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On the level of interacting systems of neurons :

• How is information encoded in such spike patterns ?

• Can we detect an external stimulus – and how ?

• How to explain the appearance of synchronized spiking patterns
or neuronal avalanches ? ?

• What about the interactions between neurons ? complex, evolve
in time, which spatial structure (random graphs ?)

• Can we rely on a macroscopic description, or do we have to look
at the system in detail ?
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A lot of people have worked on this subject...

• See for instance Faugeras, Touboul, Cessac (2009), Delarue,
Inglis, Rubenthaler and Tanré (2014, 2015), Inglis-Talay (2015) for
mean-field models of integrate and fire diffusion models.

• A completely different model : Kuramoto model (rotators), see
for instance Bertini, Giacomin, Pakdaman (2010), Giacomin,
Luçon, Poquet (2014)... And many others !

• We will concentrate on another type of models for interacting
neurons : Systems of interacting point processes with memory
of variable or infinite length.
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Outline

1 Introduction of the model : Point process models for large
systems of interacting neurons given by Hawkes processes.

2 Propagation of chaos for a particular multi-class system.

3 Erlang kernels allow to develop the memory. Associated
Piecewise Deterministic Markov Process (PDMP).

4 Study of the oscillatory behavior of the limit system.

5 And of the finite size system =⇒ Large deviations.
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Point processes

Point process model : for each neuron, we model the random
times of appearance of a spike.

N ∼ 1011 neurons (= point processes) which interact.
Sometimes : N =∞.
Counting process associated to neuron i , 1 ≤ i ≤ N :

Zi (t) = number of of spikes of neuron i during [0, t].
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Spike counting process associated to neuron i : Zi (t) has
intensity process λi (t) defined by

P(Zi has a jump during ]t, t + dt]|Ft) = λi (t)dt.

All we need to know about the process is encoded in its
intensity !

If λi (t) ≡ λ > 0, then Zi (t) is a Poisson process with intensity
λ. Not really suitable in order to have a good model for spike
trains... It is e.g. well-known that successive interspike
intervals are not independent !

This can be due to the
interactions in the system. Or : due to the memory
structure of the process...

Instead of using Poisson processes, we will use Hawkes
processes. Indeed :
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Hawkes intensity

• Hawkes processes are good models for neuronal spike trains
(Chornoboy, Schramm and Karr 1988).
• They are very popular nowadays and widely used :
− in neuroscience : Hansen, Reynaud-Bouret and Rivoirard (2015),
Julien Chevallier (2016), ...
− in genomics : Reynaud-Bouret and Schbath (2006), ...
− in financial econometrics : Jaisson and Rosenbaum (2014), ...
• have been introduced in 1971 by Hawkes to model earthquakes
and the appearance of their aftershocks.
• Main idea : Self exciting (influencing) point processes : past
events trigger future events.
• For linear Hawkes processes, there is a representation via an
equivalent branching process.
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• We will use large or infinite systems of interacting Hawkes
processes as models for interacting neurons.

• All we need to know about the process is encoded in its intensity !

• This intensity should encorporate the interactions between the
neurons.

• It should also represent the way the spiking behavior of a neuron
depends on its history :

It is commonly admitted that spike trains should be processes
having infinite or variable memory.

• Hence λi (t) is a stochastic process, depending on the whole
history before time t.
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Interacting Hawkes processes

• N neurons (N =∞ possible).
• Intensity of i−th neuron given by

λi (t) = fi

 N∑
j=1

∫
]0,t[

hij(t − s)dZj(s)

 .

• fi = spiking rate function of neuron i . fi : R→ R+, increasing,
at least locally Lipschitz.

• hij measures the influence of neuron j on neuron i and how this
influence vanishes with the time : hij(t − s) describes how a
spike of neuron j lying back t − s time units in the past
influences the present spiking probability of neuron i .
• If hij is not of compact support, then : truly infinite memory
process.
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Example

λi (t) = fi

∑
j

∫
]0,t[

Wije
−α(t−s)dZj(s)


− Wij = synaptic weight of neuron j on neuron i . If Wji > 0, then
the synapse is excitatory, if Wji < 0, then it is inhibitory.
− e−α(t−s) : past events are forgotten at exponential speed.
− Neurons which have a direct influence on the spiking activity of
i are those belonging to

Vi := {j : Wij 6= 0} ⇒ Interaction graph.

In the case of infinite systems : “minimal” summability condition
needed for existence of process during finite time intervals :

sup
i

∑
j

|Wij | <∞.

Susanne Ditlevsen, Antonio Galves, Eva Löcherbach Spiking neurons
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Example (Variable length memory Hawkes processes)

λi (t) = fi

∑
j

Wij

∫
[Lit ,t[

gj(t − s)dZj(s)

 ,

where Lit = sup{s < t : Zi ([s]) > 0} is the last spiking time of
neuron i before time t.

Induces a variable length memory
structure : each neuron depends on the spikes of its presynaptic
neurons seen since its last spiking time.

This model has been introduced in discrete time and for infinite
systems of neurons by Galves and L. (JSP, 2013).
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Point process models
Diffusion approximation

Example (Variable length memory Hawkes processes)

λi (t) = fi

∑
j

Wij

∫
[Lit ,t[

gj(t − s)dZj(s)

 ,

where Lit = sup{s < t : Zi ([s]) > 0} is the last spiking time of
neuron i before time t. Induces a variable length memory
structure : each neuron depends on the spikes of its presynaptic
neurons seen since its last spiking time.

This model has been introduced in discrete time and for infinite
systems of neurons by Galves and L. (JSP, 2013).

Susanne Ditlevsen, Antonio Galves, Eva Löcherbach Spiking neurons
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Discussion of the model

• Introduce

Ui (t) :=
∑
j

∫
]0,t[

hij(t − s)dZj(s) :

can be interpreted as membrane potential of neuron i at time t.

• Integrate-and-fire model : the membrane potential of neuron i
collects all the past spike events of its presynaptic neurons. The
neuron fires depending on the height of its actual membrane
potential. (Warning : in the literature, the name
“Integrate-and-fire”-model is often reserved to diffusion models.)
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Discussion of the spiking rate function

• the function fi : R→ R+ is called spiking rate function of
neuron i .
• Often used in computational neuroscience (and if membrane
potential is described by a diffusion model) :

fi (u) =∞ 1{u≥Ki} :

neuron i spikes when its membrane potential Ui (t) hits (or
overshoots) the threshold Ki .
• BUT : a fixed firing threshold does not exist ! ! ! ! See e.g. Jahn,
P., Berg, R., Hounsgaard, J. and Ditlevsen, S. Motoneuron
membrane potentials follow a time inhomogeneous jump diffusion
process. (2011)

• Izhikevich Dynamical systems in Neuroscience : “The irony is
that the Hodgkin-Huxley model does not have a well-defined
threshold ; it does not fire all-or-non spikes”
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Therefore, in our model : NO THRESHOLD, fi is a locally
Lipschitz continuous increasing function.

Summary

− Our model is a huge or infinite system of interacting neurons
represented by a Hawkes process in high or infinite dimension.
− Each neuron is represented by its membrane potential Ui (t) at
time t. This membrane potential integrates (sums up) all past
spiking events of the other neurons directly influencing it.
− The neuron spikes randomly at rate fi (Ui (t)).
− The process is of infinite or of variable length memory.
− In the case of a variable length memory : the membrane
potential Ui (t) is reset to 0 at each spiking time.
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Some mathematical results that I am not going to talk
about

Purely mathematical question : Does such a process exist ? Is
there a stationary version of it, and if yes, a unique one ?
− Brémaud and Massoulié (1996), Delattre, Fournier,
Hoffmann (2016),

Hodara and L. (2016) : perfect simulation
and graphical construction in the case of bounded rate
functions. Relies on the use of a so-called Kalikow
decomposition of the acceptance/rejection probabilities and
the construction of an associated Clan-of-Ancestors-process.
Uses an old idea which goes back e.g. to Comets, Fernandez,
Ferrari (2002).
− In discrete time : Galves and L. (2013), Doukhan and
Wintenberger (2008)
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Point process models
Diffusion approximation

Study of the discrete time model : Estimation of the
interaction graph : Duarte, Galves, L., Ost (2016)

Study of mean-field models and Propagation of chaos : De
Masi, Galves, L., Presutti (2015), Fournier and L. (2016),
Robert and Touboul (2014), Duarte, Ost and Rodriguez
(2016) for a spatially structured model, Drougoul and Veltz
(2016)

Estimation of the spiking rate function : Hodara, Krell, L.
(2016)
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Oscillations for multiclass systems of interacting neurons

• Let us now focus on a particular topic : Multiclass systems of
interacting neurons presenting intrinisic oscillations : With Susanne
Ditlevsen (2016), to appear in SPA.

• Main motivation : to find a good microscopic model to describe
oscillating systems of interacting neurons.

• This system is made of n populations or clusters of neurons
k = 1, 2, . . . , n.

• Each population k consists of Nk neurons described by their
counting processes

Zk,i (t), 1 ≤ i ≤ Nk .

• Within a population, all neurons behave in the same way. This is
a mean-field assumption.
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• Intensity of any neuron belonging to population k :

λk(t) = fk

 1

Nk+1

∑
1≤j≤Nk+1

∫
]0,t[

hk(t − s)dZk+1,j(s)

 .

• fk = jump rate function of population k ; Lipschitz.

• Very particular interaction graph : Population k only
influenced by population k + 1.

Function hk measures the influence
of a typical neuron of population k + 1 on a typical neuron of
population k ; hk ∈ L2

loc(R+,R).

• We are in a mean field frame : population k + 1 influences
population k only through its empirical measure. And we are in a
cyclic feedback frame ....
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Mean field limit

• What happens in the large system size limit ?

• I.e. N = N1 + . . .+ Nn total number of neurons →∞ such that
for each population

lim
N→∞

Nk

N
> 0.

• Remember the intensity of population k

λk(t) = fk

∫
]0,t[

hk(t − s)

 1

Nk+1

∑
1≤j≤Nk+1

dZk+1,j(s)


↑ LLN→ dE(Z̄k+1(s)),

where Z̄k+1 is the counting process of a typical neuron belonging
to population k + 1 in the N →∞−limit.
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Limit system

• Limit system : family of counting processes Z̄k(t), k = 1, . . . , n,
solution of an inhomogeneous equation

Z̄k(t) =

∫ t

0

∫
R+

1{z≤fk (
∫ s

0 hk (s−u)dE(Z̄k+1(u))}N
k(ds, dz),

where Nk , k = 1, . . . , n are independent PRM on R+ × R+ with
intensity dsdz .

• Existence of a pathwise unique solution of the limit system
standard ; follows ideas of Delattre, Fournier and Hoffmann (2016)
on high-dimensional Hawkes processes in the one-population case.
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Convergence to limit system

• Convergence of the finite size system (of the collection of
empirical measures of each population) to the limit : standard as
well : We take empirical measures within each population and
obtain

Theorem (Propagation of chaos, Ditlevsen and L. 2016)

(
1

N1

∑
1≤i≤N1

δ(ZN
1,i (t))t≥0

, . . . ,
1

Nn

∑
1≤i≤Nn

δ(ZN
n,i (t))t≥0

)

→ L((Z̄1(t), . . . , Z̄n(t))t≥0)

in probability, as N →∞. (P(D(R+,R+)) is endowed with the weak

convergence topology ass. with the Skorokhod top. on D(R+,R+).)
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Point process models
Diffusion approximation

• Multi-population frame : reminiscent of Graham (2008), see also
Graham and Robert (2009), who has invented the notion of
“multi-chaoticity”.

• Note that in the limit the different populations are independent.
Interactions of classes do only survive in law.
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Study of intensities of the limit system

• Taking expectations yields : mk
t = E(Z̄k(t)), k = 1, . . . , n, solves

dmk
t

dt
= fk

(∫ t

0
hk(t − u)dmk+1

u

)
.

• Equations depending on the whole history.

• Hawkes processes are truly infinite memory processes - the
intensity depends on the whole history.

• We will present situations, in which these limit intensities dmk
t

dt
OSCILLATE ! We do this in the case where the system can be
completed to a system of ODE’s.
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Developing the memory

• Consider Erlang memory kernels :

hk(t) = ck
tηk

(ηk)!
e−νk t , νk > 0, ηk ∈ N0, ck ∈ R.

• The delay of influence of the past is distributed. It takes its
maximum at about ηk/νk time units back in the past.
• The higher the order of the delay ηk , the more the delay is
concentrated around its mean value (ηk + 1)/νk .
• If ck > 0, then the influence of pop k + 1 on pop k is excitatory,
else : inhibitory.
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Recall : Limit integrated intensities given by

mk
t = E(Z̄k(t)), k = 1, . . . , n,

where
dmk

t

dt
= fk

(∫ t

0
hk(t − u)dmk+1

u

)
.

We write

xkt =

∫ t

0
hk(t − u)dmk+1

u .

CLAIM : In case of Erlang memory kernels hk , it is possible to
complete (x1, . . . , xn) to a higher dimensional system of
ODE’s ! ! ! ! This is a standard trick in delay equations that I am
going to explain now.
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Developing the memory - continued

• Suppose e.g. hk(t) = h(t) = ckte
−νk t (short memory of length

1).
h′(t) = −νkh(t) + cke

−νk t

=: −νkh(t) + h1(t),

and
h′1(t) = −νkh1(t) : system closed !

• In terms of the intensity process : Introduce for 1 ≤ k ≤ n,

xkt =

∫ t

0
hk(t − s)dmk+1

s , ykt =

∫ t

0
h1(t − s)dmk+1

s (s).

⇒ two dimensional system of ODE’s

ẋkt = −νkxkt + ykt ,

ẏkt = −νkykt + ck
dmk+1

t

dt
= −νkykt + ck fk+1(xk+1

t ),

where the last equation is linked to the next population.

Susanne Ditlevsen, Antonio Galves, Eva Löcherbach Spiking neurons
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ẏkt = −νkykt + ck
dmk+1

t

dt
= −νkykt + ck fk+1(xk+1

t ),

where the last equation is linked to the next population.

Susanne Ditlevsen, Antonio Galves, Eva Löcherbach Spiking neurons
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Summary

• memory kernels of type hk(t) = cte−νt give rise to a 2n−
dimensional system of coupled ODE’s which are of type

ẋkt = −νkxkt + ykt , ẏkt = −νkykt + ck fk+1(xk+1
t ),

for 1 ≤ k ≤ n.

• Increasing the delay of the memory kernel will increase the
dimension of this system of coupled ODE’s.

• This can be restated in terms of the original finite size jump
process ....
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Associated system of PDMP’s

Let

X k,1(t) =
1

Nk+1

Nk+1∑
j=1

∫
]0,t[

hk(t − s)dZk+1,j(s), 1 ≤ k ≤ n,

and complete to system X k,i , 1 ≤ k ≤ n, 1 ≤ i ≤ ηk + 1 : PDMP
with generator

Aϕ(x) =
n∑

k=1

[
ηk∑
i=1

{−νkxk,i + xk,i+1} ∂ϕ
∂xk,i

− νkxk,ηk+1 ∂ϕ

∂xk,ηk+1

]

+
n∑

k=1

Nk+1fk+1(xk+1,1)

[
ϕ(x +

ck
Nk+1

ek,ηk+1)− ϕ(x)

]
.
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Some simulations in the case of a single neuron

A single neuron’s spike train represented by a Hawkes process with
an Erlang memory kernel, of memory order 3 :
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Figure: Picture by Aline Duarte, Cergy
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Figure: Picture by Aline Duarte, Cergy
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Monotone cyclic feedback systems

• Recall we wanted to find oscillations for the limit intensities.
• Our system of coupled ODE’s in case of memory of order 1 : For
1 ≤ k ≤ n,

ẋkt = −νkxkt + ykt , ẏt = −νkykt + ck fk+1(xk+1
t ).

• This system is a monotone cyclic feedback system (coined by
Mallet-Paret and Smith 1990).
− Cyclic means : population k is only influenced by population
k + 1, for all k .
− Feedback : population n is influenced by population 1.
− Monotone : all rate functions fk are non-decreasing.
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• Put δ :=
∏n

k=1 ck . If δ > 0, the system is of positive feedback,
else, it is of negative feedback.

We will consider the negative
feedback case.

Suppose that fk , 1 ≤ k ≤ n, are bounded analytic Lipschitz
functions and that the system is of negative feedback. Then :

Theorem (Mallet-Paret and Smith)

1) ∃! equilibrium point x∗ of the above system.
2) ∃ easily verifiable condition implying that x∗ is unstable. In this
case, there exists at least one – but not more than a finite number
of – non constant periodic orbits. One of them is attracting.

There is the Poincaré-Bendixson theorem behind this result....
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Remark

So here they are, the oscillations (not for the mk
t , but for the

intensities) ! Because : non constant periodic orbit = oscillations

Simulation of a system with 2 populations and memory 3 for the
first population and memory 4 for the second one :

Susanne Ditlevsen, Antonio Galves, Eva Löcherbach Spiking neurons
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The role of the order of the memory

Definition

We call order of the memory of population k the index ηk ∈ N
such that

hk(t) = ck
tηk

(ηk)!
e−νk t .

We call “total order of memory of the system” the number
κ := n +

∑n
k=1 ηk .

Proposition (Emergence of structured behavior due to increasing
memory)

Suppose that νk = 1, for all 1 ≤ k ≤ n. Then there exists κ∗ such
that for all κ < κ∗, the equilibrium point x∗ is stable. For κ ≥ κ∗,
the systems presents oscillations.
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If νk < 1, then sustained oscillations only occur in some interval
κ ∈ [κ1, κ2]. Next simulation shows a system of 2 populations,
with ν1 = ν2 = 0.8, for increasing values of κ.
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Central limit Theorem

We have well understood the behavior of the limit system ....

To which extent does the large time behavior of the limit system
(m1

t , . . . ,m
n
t ) predict the large time behavior of the finite size

system ? ? ?

⇒ CLT where convergence of both N and t to infinity is
considered.
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Theorem (Ditlevsen and L. 2016)

Under suitable assumptions : For any fixed `1 ≤ N1, . . . , `n ≤ Nn,(
(
Z1,i (t)−m1

t√
m1

t

)1≤i≤`1 , . . . , (
Zn,i (t)−mn

t√
mn

t

)1≤i≤`n

)
L→ N (0, I`1+...+`n)

as N, t →∞, where we recall that

mi
t = E(Z̄ i (t)) = mean number of spikes in population i .

Have to impose conditions on the way N, t →∞ : depends on
spectral properties of offspring matrix.
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Remark

1) Result similar to the one obtained by Delattre, Fournier and
Hoffmann (2016), but extension to the non-linear case (the rate
functions fk are not supposed to be linear) : we have to use old
results on matrix renewal equations obtained by Crump (1970)
and Athreya and Murthy (1976).

2) Rate of convergence given by
√

mk
t , 1 ≤ k ≤ n.

3) Main difficulty : We do not dispose of equivalents of mk
t as

t →∞.
4) Result only holds assuming that mk

t is at least of linear growth,
within all populations. (In other words, within each population,
there is always some minimal strictly positive spiking intensity).
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Remark

1) Main assumption is on the spectral properties of the “upper”
offspring matrix Λ given by

Λij = L

∫ ∞
0
|hij |(t)dt, 1 ≤ i , j ≤ n.

Here, L is the Lipschitz constant of the rate functions f1, . . . , fn.
2) In the subcritical case, we only have to impose that t/N → 0.
Main ingredient of the proof in this case is

E(|Zk,i (t)− Z̄k(t)|) ≤ CtN−1/2.

3) Supercritical case more difficult, in this case

E(|Zk,i (t)− Z̄k(t)|) ≤ CeαtN−1/2,

α > 0, and we have to suppose that t,N →∞ in such a way that
eαtN−1/2 → 0.
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Diffusion approximation of the intensity process

Second answer to : To which extent are the oscillations of the limit
system also felt by the finite size system ? :
Have a look at the “Large intensity-small jump size”-diffusion
approximation (in case n = 2 and η1 = η2 = 1) :

Recall the generator of the associated PDMP :

Aϕ(x) =

2∑
k=1

[
{−νkxk,1 + xk,2} ∂ϕ

∂xk,1
− νkxk,2

∂ϕ

∂xk,2

]

+
2∑

k=1

Nk+1fk+1(xk+1,1)

[
ϕ(x +

ck
Nk+1

ek,2)− ϕ(x)

]
.

Small jumps of size ck
Nk+1

appearing at rate Nk+1fk+1 ⇒
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
dX1(t) = −ν1X1(t)dt + Y1(t)dt
dY1(t) = −ν1Y1(t)dt + c1f2(X2(t))dt

+ c1√
N2

√
f2(X2(t)dB2(t)

 ,

similar equations for the 2nd population X2(t),Y2(t).

• Can be extended to higher order delays in Erlang memory kernels
=⇒ longer cascades of SDE’s.

• We have the control on the weak error

‖Ptϕ− P̃tϕ‖∞ ≤ Ct
‖ϕ‖4,∞
N2

.
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General comments

• We obtain a diffusion of high dimension driven by only 2
Brownian motions - each of them approximating the jump noise of
one of the populations.

• We have to treat the memory terms as auxiliary variables. This
gives rise to coordinates of the diffusion without noise ⇒ Highly
degenerate diffusion.

• Cascade structure of the drift : a coordinate does only depend
on itself and the following coordinate.
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• Due to the cascade structure of the drift it is easy to show that
the diffusion satisfies the weak Hörmander condition.

• Hence it is strong Feller (Ichihara and Kunita 1974).

• Using a convenient Lyapunov-function and the control theorem
(and ideas inspired by the work we did with Michèle Thieullen and
Reinhard Höpfner on the stochastic Hodgkin-Huxley system)

=⇒ ∃ attainable point (which can be chosen to be the unstable
equilibrium of the limit monotone cyclic feedback system).

=⇒ diffusion is recurrent in the sense of Harris, with unique
invariant probability measure.
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Theorem

Let Γ be a non constant periodic orbit of the limit system which is
asymptotically orbitally stable. Then for all ε > 0 and for all
T > 0, for all starting configurations x , Px−almost surely,

the approx diffusion visits Bε(Γ) during a time period of length T ,

infinitely often.

Hence the diffusion approximation visits the oscillatory region
infinitely often.
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Large deviations

• Large deviations result : For large N, the diffusion stays within
tubes around the limit cycle during long periods, before eventually
leaving such a tube after a time which is of order

eNV̄ ,

V̄ : quasi-potential, related to control problem : cost of steering
the process from the limit cycle to the boundary of the tube
around the limit cycle.

• Can be made precise in the sense of sample path large deviations
for diffusions with small noise, in the sense of Freidlin-Wentzell
(although diffusion is highly degenerate). Most important point :
establish the necessary control theory in our framework.
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Some simulations of the approximating diffusion in the case n = 2
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Conclusions

• Infinite memory (of Hawkes processes) and introduction of
successive memory terms as auxiliary variables gives rise to
hypo-elliptic diffusion approximation and its specific cascade
structure.

• This cascade structure implies two things :
− weak Hörmander condition
− controllability of the system

• Oscillations appear from the non-linear “McKean-Vlasov”-type
structure of the limit system (system whose dynamics depends on
its own law) - the dynamics of each single particle do not include
any periodic behavior.
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Remarks

• Specific interaction graph structure not necessary for propagation
of chaos : other interaction graphs possible (have to be studied)

• What happens if there are periodic changes in the underlying
interaction graph ?

• Example of a dynamical system where there are several
coexisting stable orbits ?

• What happens when the synaptic strength (i.e. the factor ck)
changes over time (→ plasticity ?)

• And if we add an external signal during some time ?
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Final remarks on Hawkes processes

• Erlang kernels allow to describe certain Hawkes processes via an
associated system of PDMP’s

• Their stability behavior can be easily analyzed.

• Gives another approach to Perfect simulation of non-linear
Hawkes processes (work in progress with A. Duarte and G. Ost).
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Point process models
Diffusion approximation

Paper is on arXiv :

• Ditlevsen, S. L.E. Multi-class oscillating systems of
interacting neurons. Available on
http ://arxiv.org/abs/1512.00265, 2015.

• L.E. Large deviations for oscillating systems of interacting
Hawkes processes in a mean field frame. Soon on arXiv.

Susanne Ditlevsen, Antonio Galves, Eva Löcherbach Spiking neurons
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Thank you for your attention.
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