Spiking neurons: interacting processes with memory of variable or infinite length

Susanne Ditlevsen Antonio Galves Eva Löcherbach

Journées MAS, Grenoble, 2016
Neurons: generate and propagate action potentials along their axons.

They communicate by transmitting spikes: this is a fast transmembrane current of K^+ / Na^+ ions, stimulated by ion pumps.
The emission of spikes depends on external stimuli. Picture shows the membrane potential of one single neuron, under increasing concentration of potassium.

\textbf{Figure:} Cortical slice of an active network of $O(10^4)$ neurons, Picture by R. Höpfner and H. Luhmann, Mainz
Closer look to spikes

The shape and the time duration of spikes is almost deterministic - and always “the same” (for a fixed neuron, under the same experimental conditions)

Figure: Picture by R. Höpfner, Mainz
The next picture is by Jahn, Berg, Hounsgaard, Ditlevsen, 2011. It also shows that spikes **do not appear** when the membrane potential hits a fixed threshold...
• The duration of each spike is very short (about 1 ms) - followed by a refractory period during which the neuron can not spike again (about 1 ms).

• Since shape of spike almost deterministic → report if at a given time there is presence or absence of a spike → spike trains.

• Allows to encode the interactions between neurons.

• Can be done in discrete or continuous time (in this talk : mostly, continuous time).
Figure: Spike trains of several neurons - Picture by W. Maass
Why should a mathematician be interested in all this???

On the level of a single neuron:

- What is exactly a spike?
- What is a good model for the spike generation?
 → Dynamical systems: **Hodgkin-Huxley, Fitzhugh-Nagumo, Integrate-and-Fire diffusion models**

On the level of interacting systems of neurons:

- How is information encoded in such spike patterns?
- Can we detect an external stimulus – and how?
- How to explain the appearance of synchronized spiking patterns or neuronal avalanches?
- What about the interactions between neurons? Complex, evolve in time, which spatial structure (random graphs?)
- Can we rely on a macroscopic description, or do we have to look at the system in detail?
A lot of people have worked on this subject...

- A completely different model: Kuramoto model (rotators), see for instance Bertini, Giacomin, Pakdaman (2010), Giacomin, Luçon, Poquet (2014)... And many others!
A lot of people have worked on this subject...

- A completely different model: Kuramoto model (rotators), see for instance Bertini, Giacomin, Pakdaman (2010), Giacomin, Luçon, Poquet (2014)... And many others!

- We will concentrate on another type of models for interacting neurons: Systems of interacting point processes with memory of variable or infinite length.
Outline

1. Introduction of the model: Point process models for large systems of interacting neurons given by Hawkes processes.
2. Propagation of chaos for a particular multi-class system.
4. Study of the oscillatory behavior of the limit system.
5. And of the finite size system \Rightarrow Large deviations.

Susanne Ditlevsen, Antonio Galves, Eva Löcherbach
Point process model: for each neuron, we model the random times of appearance of a spike.

$N \sim 10^{11}$ neurons (point processes) which interact. Sometimes: $N = \infty$.

Counting process associated to neuron $i, 1 \leq i \leq N$:

$$Z_i(t) = \text{number of spikes of neuron } i \text{ during } [0, t].$$
Spike counting process associated to neuron $i: Z_i(t)$ has intensity process $\lambda_i(t)$ defined by

$$P(Z_i \text{ has a jump during } [t, t + dt]|\mathcal{F}_t) = \lambda_i(t)dt.$$

All we need to know about the process is encoded in its intensity!

If $\lambda_i(t) \equiv \lambda > 0$, then $Z_i(t)$ is a **Poisson process** with intensity λ. Not really suitable in order to have a good model for spike trains... It is e.g. well-known that successive interspike intervals are **not independent**!
Spike counting process associated to neuron i : $Z_i(t)$ has intensity process $\lambda_i(t)$ defined by

$$P(Z_i \text{ has a jump during } [t, t + dt]|F_t) = \lambda_i(t)dt.$$

All we need to know about the process is encoded in its intensity!

If $\lambda_i(t) \equiv \lambda > 0$, then $Z_i(t)$ is a Poisson process with intensity λ. Not really suitable in order to have a good model for spike trains... It is e.g. well-known that successive interspike intervals are not independent! This can be due to the interactions in the system. Or : due to the memory structure of the process...
Spike counting process associated to neuron i: $Z_i(t)$ has intensity process $\lambda_i(t)$ defined by

$$P(Z_i \text{ has a jump during } [t, t + dt]|\mathcal{F}_t) = \lambda_i(t)dt.$$

All we need to know about the process is encoded in its intensity!

If $\lambda_i(t) \equiv \lambda > 0$, then $Z_i(t)$ is a Poisson process with intensity λ. Not really suitable in order to have a good model for spike trains... It is e.g. well-known that successive interspike intervals are not independent! This can be due to the interactions in the system. Or: due to the memory structure of the process...

Instead of using Poisson processes, we will use Hawkes processes. Indeed:
Hawkes processes are good models for neuronal spike trains (Chornoboy, Schramm and Karr 1988).

They are very popular nowadays and widely used:
- in neuroscience: Hansen, Reynaud-Bouret and Rivoirard (2015), Julien Chevallier (2016), ...
- in genomics: Reynaud-Bouret and Schbath (2006), ...
- in financial econometrics: Jaisson and Rosenbaum (2014), ...

Hawkes processes have been introduced in 1971 by Hawkes to model earthquakes and the appearance of their aftershocks.

Main idea: Self exciting (influencing) point processes: past events trigger future events.

For linear Hawkes processes, there is a representation via an equivalent branching process.
• We will use large or infinite systems of interacting Hawkes processes as models for interacting neurons.

• All we need to know about the process is encoded in its intensity!

• This intensity should encorporate the interactions between the neurons.

• It should also represent the way the spiking behavior of a neuron depends on its history:

It is commonly admitted that spike trains should be processes having infinite or variable memory.

• Hence $\lambda_i(t)$ is a stochastic process, depending on the whole history before time t.
Interacting Hawkes processes

- N neurons ($N = \infty$ possible).
- Intensity of i–th neuron given by

$$
\lambda_i(t) = f_i \left(\sum_{j=1}^{N} \int_{]0,t[} h_{ij}(t-s) dZ_j(s) \right).
$$

- $f_i =$ spiking rate function of neuron i. $f_i : \mathbb{R} \to \mathbb{R}_+$, increasing, at least locally Lipschitz.
Interacting Hawkes processes

• \mathcal{N} neurons ($\mathcal{N} = \infty$ possible).
• Intensity of i–th neuron given by

$$\lambda_i(t) = f_i \left(\sum_{j=1}^{\mathcal{N}} \int_{0}^{t} h_{ij}(t - s) \, dZ_j(s) \right).$$

• $f_i =$ spiking rate function of neuron i. $f_i : \mathbb{R} \rightarrow \mathbb{R}_+$, increasing, at least locally Lipschitz.
• h_{ij} measures the influence of neuron j on neuron i and how this influence vanishes with the time: $h_{ij}(t - s)$ describes how a spike of neuron j lying back $t - s$ time units in the past influences the present spiking probability of neuron i.
Interacting Hawkes processes

- N neurons ($N = \infty$ possible).
- Intensity of i–th neuron given by

$$\lambda_i(t) = f_i \left(\sum_{j=1}^{\infty} \int_{[0,t]} h_{ij}(t-s) dZ_j(s) \right).$$

- $f_i = \text{spiking rate function}$ of neuron i. $f_i : \mathbb{R} \rightarrow \mathbb{R}_+$, increasing, at least locally Lipschitz.
- h_{ij} measures the influence of neuron j on neuron i and how this influence vanishes with the time: $h_{ij}(t-s)$ describes how a spike of neuron j lying back $t-s$ time units in the past influences the present spiking probability of neuron i.
- If h_{ij} is not of compact support, then: \textbf{truly infinite memory process}.

Susanne Ditlevsen, Antonio Galves, Eva Löcherbach

Spiking neurons
Example

\[\lambda_i(t) = f_i \left(\sum_j \int_{0,t[} W_{ij} e^{-\alpha(t-s)} dZ_j(s) \right) \]

- \(W_{ij} = \text{synaptic weight of neuron } j \text{ on neuron } i \). If \(W_{ji} > 0 \), then the synapse is \textbf{excitatory}, if \(W_{ji} < 0 \), then it is \textbf{inhibitory}.
- \(e^{-\alpha(t-s)} \): past events are forgotten at exponential speed.
- Neurons which have a direct influence on the spiking activity of \(i \) are those belonging to

\[\mathcal{V}_i := \{ j : W_{ij} \neq 0 \} \Rightarrow \textbf{Interaction graph}. \]

In the case of infinite systems: “minimal” summability condition needed for existence of process during finite time intervals:

\[\sup_i \sum_j |W_{ij}| < \infty. \]
Example (Variable length memory Hawkes processes)

\[\lambda_i(t) = f_i \left(\sum_j W_{ij} \int_{L^i_t, t} g_j(t - s) dZ_j(s) \right), \]

where \(L^i_t = \sup\{s < t : Z_i([s]) > 0\} \) is the last spiking time of neuron \(i \) before time \(t \).
Example (Variable length memory Hawkes processes)

\[
\lambda_i(t) = f_i \left(\sum_j W_{ij} \int_{[L_i, t]} g_j(t - s) dZ_j(s) \right),
\]

where \(L_t^i = \sup\{s < t : Z_i([s]) > 0\} \) is the last spiking time of neuron \(i \) before time \(t \). Induces a variable length memory structure: each neuron depends on the spikes of its presynaptic neurons seen since its last spiking time.

This model has been introduced in discrete time and for infinite systems of neurons by Galves and L. (JSP, 2013).
Discussion of the model

- Introduce

\[U_i(t) := \sum_j \int_{0}^{t} h_{ij}(t - s) dZ_j(s) : \]

This can be interpreted as membrane potential of neuron \(i \) at time \(t \).

- Integrate-and-fire model: the membrane potential of neuron \(i \) collects all the past spike events of its presynaptic neurons. The neuron fires depending on the height of its actual membrane potential. (Warning: in the literature, the name “Integrate-and-fire”-model is often reserved to diffusion models.)
Discussion of the spiking rate function

- the function \(f_i : \mathbb{R} \rightarrow \mathbb{R}_+ \) is called **spiking rate function** of neuron \(i \).
- Often used in computational neuroscience (and if membrane potential is described by a diffusion model):
 \[
 f_i(u) = \infty \ 1_{\{u \geq K_i\}}:
 \]

 neuron \(i \) spikes when its membrane potential \(U_i(t) \) hits (or overshoots) the **threshold** \(K_i \).
- BUT: **a fixed firing threshold does not exist!** See e.g. Jahn, P., Berg, R., Hounsgaard, J. and Ditlevsen, S. *Motoneuron membrane potentials follow a time inhomogeneous jump diffusion process.* (2011)
Discussion of the spiking rate function

- the function $f_i : \mathbb{R} \rightarrow \mathbb{R}_+$ is called **spiking rate function** of neuron i.
- Often used in computational neuroscience (and if membrane potential is described by a diffusion model):

$$f_i(u) = \infty \ 1\{u \geq K_i\} :$$

neuron i spikes when its membrane potential $U_i(t)$ hits (or overshoots) the **threshold** K_i.
- **BUT**: a fixed firing threshold does not exist! See e.g. Jahn, P., Berg, R., Hounsgaard, J. and Ditlevsen, S. *Motoneuron membrane potentials follow a time inhomogeneous jump diffusion process.* (2011)
- Izhikevich *Dynamical systems in Neuroscience*: “The irony is that the Hodgkin-Huxley model does not have a well-defined threshold; it does not fire all-or-non spikes”
Therefore, in our model: NO THRESHOLD, f_i is a **locally Lipschitz continuous increasing** function.

Summary

- Our model is a huge or infinite system of interacting neurons represented by a Hawkes process in high or infinite dimension.
- Each neuron is represented by its membrane potential $U_i(t)$ at time t. This membrane potential integrates (sums up) all past spiking events of the other neurons directly influencing it.
- The neuron spikes randomly at rate $f_i(U_i(t))$.
- The process is of infinite or of variable length memory.
- In the case of a variable length memory: the membrane potential $U_i(t)$ is reset to 0 at each spiking time.
Some mathematical results that I am not going to talk about

- Purely mathematical question: Does such a process exist? Is there a stationary version of it, and if yes, a unique one?
 – Brémaud and Massoulié (1996), Delattre, Fournier, Hoffmann (2016),

Purely mathematical question: Does such a process exist? Is there a stationary version of it, and if yes, a unique one? – Brémaud and Massoulié (1996), Delattre, Fournier, Hoffmann (2016), Hodara and L. (2016): **perfect simulation and graphical construction** in the case of **bounded** rate functions. Relies on the use of a so-called **Kalikow decomposition** of the acceptance/rejection probabilities and the construction of an associated **Clan-of-Ancestors-process**. Uses an old idea which goes back e.g. to Comets, Fernandez, Ferrari (2002).
Some mathematical results that I am not going to talk about

- Purely mathematical question: Does such a process exist? Is there a stationary version of it, and if yes, a unique one?
Study of the discrete time model: **Estimation of the interaction graph**: Duarte, Galves, L., Ost (2016)

Estimation of the spiking rate function: Hodara, Krell, L. (2016)
Let us now focus on a particular topic: Multiclass systems of interacting neurons presenting intrinsic oscillations: With Susanne Ditlevsen (2016), to appear in SPA.

Main motivation: to find a good microscopic model to describe oscillating systems of interacting neurons.

This system is made of n populations or clusters of neurons $k = 1, 2, \ldots, n$.
Oscillations for multiclass systems of interacting neurons

• Let us now focus on a particular topic: Multiclass systems of interacting neurons presenting intrinsic oscillations: With Susanne Ditlevsen (2016), to appear in SPA.

• Main motivation: to find a good microscopic model to describe oscillating systems of interacting neurons.

• This system is made of n populations or clusters of neurons $k = 1, 2, \ldots, n$.

• Each population k consists of N_k neurons described by their counting processes

$$Z_{k,i}(t), 1 \leq i \leq N_k.$$

• Within a population, all neurons behave in the same way. This is a mean-field assumption.
• Intensity of any neuron belonging to population k:

$$\lambda_k(t) = f_k \left(\frac{1}{N_{k+1}} \sum_{1 \leq j \leq N_{k+1}} \int_{0}^{t} h_k(t - s) dZ_{k+1,j}(s) \right).$$

• $f_k =$ jump rate function of population k; *Lipschitz*.

• **Very particular interaction graph**: Population k only influenced by population $k + 1$.

Spiking neurons
• Intensity of any neuron belonging to population k:

$$\lambda_k(t) = f_k \left(\frac{1}{N_{k+1}} \sum_{1 \leq j \leq N_{k+1}} \int_{0,t} h_k(t - s) dZ_{k+1,j}(s) \right).$$

• $f_k =$ jump rate function of population k; *Lipschitz*.

• **Very particular interaction graph**: Population k only influenced by population $k+1$. Function h_k measures the influence of a typical neuron of population $k+1$ on a typical neuron of population k; $h_k \in L^2_{\text{loc}}(\mathbb{R}_+, \mathbb{R})$.
• Intensity of any neuron belonging to population k:

$$\lambda_k(t) = f_k \left(\frac{1}{N_{k+1}} \sum_{1 \leq j \leq N_{k+1}} \int_{0,t} h_k(t-s)dZ_{k+1,j}(s) \right).$$

• $f_k = \text{jump rate function of population } k; \text{ Lipschitz.}$

• **Very particular interaction graph**: Population k only influenced by population $k+1$. Function h_k measures the influence of a typical neuron of population $k+1$ on a typical neuron of population k; $h_k \in L^2_{loc}(\mathbb{R}_+, \mathbb{R})$.

• We are in a **mean field frame**: population $k+1$ influences population k only through its **empirical measure**.
• Intensity of any neuron belonging to population k:

$$\lambda_k(t) = f_k \left(\frac{1}{N_{k+1}} \sum_{1 \leq j \leq N_{k+1}} \int_{0,t} h_k(t - s) dZ_{k+1,j}(s) \right).$$

• $f_k = \text{jump rate function of population } k$; Lipschitz.

• Very particular interaction graph: Population k only influenced by population $k + 1$. Function h_k measures the influence of a typical neuron of population $k + 1$ on a typical neuron of population k; $h_k \in L^2_{loc}(\mathbb{R}_+, \mathbb{R})$.

• We are in a mean field frame: population $k + 1$ influences population k only through its empirical measure. And we are in a cyclic feedback frame
Mean field limit

- What happens in the large system size limit?

- I.e. $N = N_1 + \ldots + N_n$ total number of neurons $\to \infty$ such that for each population

$$\lim_{N \to \infty} \frac{N_k}{N} > 0.$$

- Remember the intensity of population k

$$\lambda_k(t) = f_k \left(\int_{0,t} h_k(t - s) \left[\frac{1}{N_{k+1}} \sum_{1 \leq j \leq N_{k+1}} dZ_{k+1,j}(s) \right] \right)$$

$$\uparrow \text{LLN} \to \mathbb{E}(\tilde{Z}_{k+1}(s)) ,$$

where \tilde{Z}_{k+1} is the counting process of a typical neuron belonging to population $k + 1$ in the $N \to \infty$–limit.
Limit system

• Limit system: family of counting processes $\bar{Z}_k(t)$, $k = 1, \ldots, n$, solution of an inhomogeneous equation

$$\bar{Z}_k(t) = \int_0^t \int_{\mathbb{R}_+} 1\{z \leq f_k(\int_0^s h_k(s-u)d\bar{Z}_k(u))\} N^k(ds, dz),$$

where N^k, $k = 1, \ldots, n$ are independent PRM on $\mathbb{R}_+ \times \mathbb{R}_+$ with intensity $dsdz$.

• Existence of a pathwise unique solution of the limit system standard; follows ideas of Delattre, Fournier and Hoffmann (2016) on high-dimensional Hawkes processes in the one-population case.
Convergence to limit system

- Convergence of the finite size system (of the collection of empirical measures of each population) to the limit: standard as well: We take empirical measures within each population and obtain

Theorem (Propagation of chaos, Ditlevsen and L. 2016)

\[
\left(\frac{1}{N_1} \sum_{1 \leq i \leq N_1} \delta(Z_{1,i}(t))_{t \geq 0}, \ldots, \frac{1}{N_n} \sum_{1 \leq i \leq N_n} \delta(Z_{n,i}(t))_{t \geq 0}\right) \rightarrow \mathcal{L}((\tilde{Z}_1(t), \ldots, \tilde{Z}_n(t))_{t \geq 0})
\]

in probability, as \(N \rightarrow \infty\). \(\mathcal{P}(D(\mathbb{R}_+, \mathbb{R}_+))\) is endowed with the weak convergence topology ass. with the Skorokhod top. on \(D(\mathbb{R}_+, \mathbb{R}_+)\).
• Multi-population frame: reminiscent of Graham (2008), see also Graham and Robert (2009), who has invented the notion of “multi-chaoticity”.

• Note that in the limit the different populations are independent. Interactions of classes do only survive in law.
• Taking expectations yields: \(m^k_t = \mathbb{E}(\tilde{Z}_k(t)), k = 1, \ldots, n \), solves

\[
\frac{dm^k_t}{dt} = f_k \left(\int_0^t h_k(t - u)dm^{k+1}_u \right).
\]
• Taking expectations yields: \(m_k^t = \mathbb{E}(\tilde{Z}_k(t)), k = 1, \ldots, n \), solves

\[
\frac{dm_k^t}{dt} = f_k \left(\int_0^t h_k(t - u) dm_{k+1}^u \right).
\]

• Equations depending on the whole history.

• Hawkes processes are truly infinite memory processes - the intensity depends on the whole history.

• We will present situations, in which these limit intensities \(\frac{dm_k^t}{dt} \) OSCILLATE! We do this in the case where the system can be completed to a system of ODE’s.
Developing the memory

• Consider Erlang memory kernels:

\[h_k(t) = c_k \frac{t^{\eta_k}}{\eta_k!} e^{-\nu_k t}, \quad \nu_k > 0, \eta_k \in \mathbb{N}_0, c_k \in \mathbb{R}. \]

• The delay of influence of the past is distributed. It takes its maximum at about \(\eta_k/\nu_k \) time units back in the past.
• The higher the order of the delay \(\eta_k \), the more the delay is concentrated around its mean value \((\eta_k + 1)/\nu_k \).
• If \(c_k > 0 \), then the influence of pop \(k + 1 \) on pop \(k \) is excitatory, else: inhibitory.
Recall: Limit integrated intensities given by

\[m^k_t = \mathbb{E}(\tilde{Z}_k(t)), \quad k = 1, \ldots, n, \]

where

\[\frac{dm^k_t}{dt} = f_k \left(\int_0^t h_k(t - u) dm^{k+1}_u \right). \]
Recall: Limit integrated intensities given by

\[m^k_t = \mathbb{E}(\bar{Z}_k(t)), \quad k = 1, \ldots, n, \]

where

\[\frac{dm^k_t}{dt} = f_k \left(\int_0^t h_k(t - u) dm^{k+1}_u \right). \]

We write

\[x^k_t = \int_0^t h_k(t - u) dm^{k+1}_u. \]
Recall: Limit integrated intensities given by

\[m^k_t = \mathbb{E}(\bar{Z}_k(t)), \quad k = 1, \ldots, n, \]

where

\[\frac{dm^k_t}{dt} = f_k \left(\int_0^t h_k(t - u) dm^{k+1}_u \right). \]

We write

\[x^k_t = \int_0^t h_k(t - u) dm^{k+1}_u. \]

CLAIM: In case of Erlang memory kernels \(h_k \), it is possible to complete \((x^1, \ldots, x^n)\) to a higher dimensional system of ODE's! This is a standard trick in delay equations that I am going to explain now.
• Suppose e.g. $h_k(t) = h(t) = c_k t e^{-\nu_k t}$ (short memory of length 1).

$$h'(t) = -\nu_k h(t) + c_k e^{-\nu_k t}$$
Developing the memory - continued

- Suppose e.g. \(h_k(t) = h(t) = c_k t e^{-\nu_k t} \) (short memory of length 1).

\[
h'(t) = -\nu_k h(t) + c_k e^{-\nu_k t} =: -\nu_k h(t) + h_1(t),
\]
Developing the memory - continued

- Suppose e.g. $h_k(t) = h(t) = c_k t e^{-\nu_k t}$ (short memory of length 1).

 $$h'(t) = -\nu_k h(t) + c_k e^{-\nu_k t} =: -\nu_k h(t) + h_1(t),$$

 and

 $$h'_1(t) = -\nu_k h_1(t) : \text{system closed!}$$
Developing the memory - continued

• Suppose e.g. \(h_k(t) = h(t) = c_k t e^{-\nu_k t} \) (short memory of length 1).

\[
h'(t) = -\nu_k h(t) + c_k e^{-\nu_k t} =: -\nu_k h(t) + h_1(t),
\]

and

\[
h'_1(t) = -\nu_k h_1(t) : \text{system closed!}
\]

• In terms of the intensity process: Introduce for \(1 \leq k \leq n \),

\[
\begin{align*}
x^k_t &= \int_0^t h_k(t-s) dm_{s+1}^k, \quad y^k_t = \int_0^t h_1(t-s) dm_{s+1}^k(s). \\
\Rightarrow \text{two dimensional system of ODE's}
\end{align*}
\]

\[
\begin{align*}
\dot{x}^k_t &= -\nu_k x^k_t + y^k_t, \\
\dot{y}^k_t &= -\nu_k y^k_t + c_k \frac{dm_{s+1}^k}{dt}
\end{align*}
\]

Susanne Ditlevsen, Antonio Galves, Eva Löcherbach
Developing the memory - continued

• Suppose e.g. $h_k(t) = h(t) = c_k t e^{-\nu_k t}$ (short memory of length 1).

\[h'(t) = -\nu_k h(t) + c_k e^{-\nu_k t} =: -\nu_k h(t) + h_1(t), \]

and

\[h'_1(t) = -\nu_k h_1(t) : \text{system closed!} \]

• In terms of the intensity process: Introduce for $1 \leq k \leq n$,

\[x^k_t = \int_0^t h_k(t-s) \, dm_{s+1}^{k+1}, \quad y^k_t = \int_0^t h_1(t-s) \, dm_{s+1}^{k+1}(s). \]

⇒ two dimensional system of ODE's

\[
\begin{align*}
\dot{x}^k_t &= -\nu_k x^k_t + y^k_t, \\
\dot{y}^k_t &= -\nu_k y^k_t + c_k \frac{dm_t^{k+1}}{dt} = -\nu_k y^k_t + c_k f_{k+1}(x^{k+1}_t),
\end{align*}
\]

where the last equation is linked to the next population.
• memory kernels of type $h_k(t) = cte^{-\nu t}$ give rise to a $2n$-dimensional system of coupled ODE's which are of type

\[
\dot{x}_t^k = -\nu_k x_t^k + y_t^k, \quad \dot{y}_t^k = -\nu_k y_t^k + c_k f_{k+1}(x_t^{k+1}),
\]

for $1 \leq k \leq n$.
• memory kernels of type $h_k(t) = cte^{-\nu t}$ give rise to a $2n-$dimensional system of coupled ODE’s which are of type

$$\dot{x}_t^k = -\nu_k x_t^k + y_t^k, \quad \dot{y}_t^k = -\nu_k y_t^k + c_k f_{k+1}(x_t^{k+1}),$$

for $1 \leq k \leq n$.

• Increasing the delay of the memory kernel will increase the dimension of this system of coupled ODE’s.

• This can be restated in terms of the original finite size jump process
Let

\[X^{k,1}(t) = \frac{1}{N_{k+1}} \sum_{j=1}^{N_{k+1}} \int_{0}^{t} h_{k}(t - s) dZ_{k+1,j}(s), \]

\[1 \leq k \leq n, \]

and complete to system \(X^{k,i}, 1 \leq k \leq n, 1 \leq i \leq \eta_k + 1 : \) PDMP with generator

\[A\varphi(x) = \sum_{k=1}^{n} \left[\sum_{i=1}^{\eta_k} \left\{ -\nu_k x^{k,i} + x^{k,i+1} \right\} \frac{\partial \varphi}{\partial x^{k,i}} - \nu_k x^{k,\eta_k+1} \frac{\partial \varphi}{\partial x^{k,\eta_k+1}} \right] \]

\[+ \sum_{k=1}^{n} N_{k+1} f_{k+1}(x_{k+1,1}) \left[\varphi(x + \frac{c_k}{N_{k+1}} e_{k,\eta_k+1}) - \varphi(x) \right]. \]
Some simulations in the case of a single neuron

A single neuron’s spike train represented by a Hawkes process with an Erlang memory kernel, of memory order 3:

Figure: Picture by Aline Duarte, Cergy
Figure: Picture by Aline Duarte, Cergy
Recall we wanted to find oscillations for the limit intensities.

Our system of coupled ODE’s in case of memory of order 1: For $1 \leq k \leq n$,

$$\dot{x}_t^k = -\nu_k x_t^k + y_t^k, \quad \dot{y}_t = -\nu_k y_t^k + c_k f_{k+1}(x_{t}^{k+1}).$$
Recall we wanted to find oscillations for the limit intensities.

Our system of coupled ODE’s in case of memory of order 1:

For $1 \leq k \leq n$,

$$\dot{x}_t^k = -\nu_k x_t^k + y_t^k, \quad \dot{y}_t = -\nu_k y_t^k + c_k f_{k+1}(x_{t+1}^k).$$

This system is a monotone cyclic feedback system (coined by Mallet-Paret and Smith 1990).

- Cyclic means: population k is only influenced by population $k + 1$, for all k.
- Feedback: population n is influenced by population 1.
- Monotone: all rate functions f_k are non-decreasing.
• Put $\delta := \prod_{k=1}^{n} c_k$. If $\delta > 0$, the system is of positive feedback, else, it is of negative feedback.
• Put $\delta := \prod_{k=1}^{n} c_k$. If $\delta > 0$, the system is of positive feedback, else, it is of negative feedback. We will consider the negative feedback case.

Suppose that $f_k, 1 \leq k \leq n$, are bounded analytic Lipschitz functions and that the system is of negative feedback. Then:

Theorem (Mallet-Paret and Smith)

1) $\exists!$ equilibrium point x^* of the above system.
2) \exists easily verifiable condition implying that x^* is unstable. In this case, there exists at least one – but not more than a finite number of – non constant periodic orbits. One of them is attracting.

There is the Poincaré-Bendixson theorem behind this result....
Remark

So here they are, the oscillations (not for the m_t^k, but for the intensities)! Because: non constant periodic orbit = oscillations

Simulation of a system with 2 populations and memory 3 for the first population and memory 4 for the second one:
The role of the order of the memory

Definition

We call order of the memory of population k the index $\eta_k \in \mathbb{N}$ such that

$$h_k(t) = c_k \frac{t^{\eta_k}}{(\eta_k)!} e^{-\nu_k t}.$$

We call “total order of memory of the system” the number

$$\kappa := n + \sum_{k=1}^{n} \eta_k.$$

Proposition (Emergence of structured behavior due to increasing memory)

Suppose that $\nu_k = 1$, for all $1 \leq k \leq n$. Then there exists κ^* such that for all $\kappa < \kappa^*$, the equilibrium point x^* is stable. For $\kappa \geq \kappa^*$, the systems presents oscillations.
If $\nu_k < 1$, then sustained oscillations only occur in some interval $\kappa \in [\kappa_1, \kappa_2]$. Next simulation shows a system of 2 populations, with $\nu_1 = \nu_2 = 0.8$, for increasing values of κ.

![Graph showing oscillations for different values of η_1 and η_2.](image)
We have well understood the behavior of the limit system

To which extent does the large time behavior of the limit system (m_1^t, \ldots, m_n^t) predict the large time behavior of the finite size system? ??

\Rightarrow CLT where convergence of both N and t to infinity is considered.
Theorem (Ditlevsen and L. 2016)

Under suitable assumptions: For any fixed $\ell_1 \leq N_1, \ldots, \ell_n \leq N_n$,

\[
\left(\frac{Z_{1,i}(t) - m^1_t}{\sqrt{m^1_t}} \right)_{1 \leq i \leq \ell_1}, \ldots, \left(\frac{Z_{n,i}(t) - m^n_t}{\sqrt{m^n_t}} \right)_{1 \leq i \leq \ell_n}
\]

\[\xrightarrow{L} \mathcal{N}(0, I_{\ell_1 + \ldots + \ell_n}) \]

as $N, t \to \infty$, where we recall that

\[m^i_t = \mathbb{E}(\bar{Z}^i(t)) = \text{mean number of spikes in population } i.\]

Have to impose conditions on the way $N, t \to \infty$: depends on spectral properties of offspring matrix.
1) Result similar to the one obtained by Delattre, Fournier and Hoffmann (2016), but extension to the non-linear case (the rate functions f_k are not supposed to be linear): we have to use old results on matrix renewal equations obtained by Crump (1970) and Athreya and Murthy (1976).
Remark

1) Result similar to the one obtained by Delattre, Fournier and Hoffmann (2016), but extension to the non-linear case (the rate functions f_k are not supposed to be linear): we have to use old results on matrix renewal equations obtained by Crump (1970) and Athreya and Murthy (1976).

2) Rate of convergence given by $\sqrt{m^k_t}, 1 \leq k \leq n$.

3) Main difficulty: We do not dispose of equivalents of m^k_t as $t \to \infty$.

Remark

1) Result similar to the one obtained by Delattre, Fournier and Hoffmann (2016), but extension to the non-linear case (the rate functions f_k are not supposed to be linear) : we have to use old results on matrix renewal equations obtained by Crump (1970) and Athreya and Murthy (1976).

2) Rate of convergence given by $\sqrt{m^k_t}, 1 \leq k \leq n$.

3) Main difficulty : We do not dispose of equivalents of m^k_t as $t \to \infty$.

4) Result only holds assuming that m^k_t is at least of linear growth, within all populations. (In other words, within each population, there is always some minimal strictly positive spiking intensity).
Remark

1) Main assumption is on the spectral properties of the “upper” offspring matrix Λ given by

$$\Lambda_{ij} = L \int_{0}^{\infty} |h_{ij}(t)| dt, 1 \leq i, j \leq n.$$

Here, L is the Lipschitz constant of the rate functions f_1, \ldots, f_n.

2) In the subcritical case, we only have to impose that $t/N \to 0$. Main ingredient of the proof in this case is

$$\mathbb{E}(|Z_{k,i}(t) - \bar{Z}_k(t)|) \leq CtN^{-1/2}.$$

3) Supercritical case more difficult, in this case

$$\mathbb{E}(|Z_{k,i}(t) - \bar{Z}_k(t)|) \leq Ce^{\alpha t} N^{-1/2},$$

$\alpha > 0$, and we have to suppose that $t, N \to \infty$ in such a way that $e^{\alpha t} N^{-1/2} \to 0$.
Second answer to: To which extent are the oscillations of the limit system also felt by the finite size system?:
Have a look at the “Large intensity-small jump size”-diffusion approximation (in case $n = 2$ and $\eta_1 = \eta_2 = 1$):

Recall the generator of the associated PDMP:

$$A\varphi(x) =$$

$$\sum_{k=1}^{2} \left\{ -\nu_k x_k,1 + x_k,2 \right\} \frac{\partial \varphi}{\partial x_k,1} - \nu_k x_k,2 \frac{\partial \varphi}{\partial x_k,2}$$

$$+ \sum_{k=1}^{2} N_{k+1} f_{k+1}(x_{k+1,1}) \left[\varphi(x + \frac{c_k}{N_{k+1}} e_{k,2}) - \varphi(x) \right].$$

Small jumps of size $\frac{c_k}{N_{k+1}}$ appearing at rate $N_{k+1} f_{k+1} \Rightarrow$
\[
\begin{align*}
\begin{cases}
 dX_1(t) &= -\nu_1 X_1(t) dt + Y_1(t) dt \\
 dY_1(t) &= -\nu_1 Y_1(t) dt + c_1 f_2(X_2(t)) dt \\
 &\quad + \frac{c_1}{\sqrt{N_2}} \sqrt{f_2(X_2(t))} dB_2(t)
\end{cases}
\end{align*}
\]
similar equations for the 2nd population \(X_2(t), Y_2(t) \).

- Can be extended to higher order delays in Erlang memory kernels \(\Rightarrow \) longer cascades of SDE’s.
- We have the control on the weak error

\[
\| P_t \phi - \tilde{P}_t \phi \|_\infty \leq C_t \frac{\| \phi \|_{4,\infty}}{N_2}.
\]
• We obtain a diffusion of high dimension driven by only 2 Brownian motions - each of them approximating the jump noise of one of the populations.

• We have to treat the memory terms as auxiliary variables. This gives rise to coordinates of the diffusion without noise ⇒ Highly degenerate diffusion.

• Cascade structure of the drift: a coordinate does only depend on itself and the following coordinate.
• Due to the **cascade structure** of the drift it is easy to show that the diffusion satisfies the weak Hörmander condition.

• Hence it is strong Feller (*Ichihara and Kunita 1974*).
• Due to the **cascade structure** of the drift it is easy to show that the diffusion satisfies the **weak Hörmander condition**.

• Hence it is strong Feller (*Ichihara and Kunita 1974*).

• Using a convenient **Lyapunov-function and the control theorem** (and ideas inspired by the work we did with Michèle Thieullen and Reinhard Höpfner on the stochastic Hodgkin-Huxley system)

 \[\Rightarrow \exists \text{ attainable point (which can be chosen to be the unstable equilibrium of the limit monotone cyclic feedback system).}\]

 \[\Rightarrow \text{diffusion is recurrent in the sense of Harris, with unique invariant probability measure.}\]
Theorem

Let Γ be a non constant periodic orbit of the limit system which is asymptotically orbitally stable. Then for all $\varepsilon > 0$ and for all $T > 0$, for all starting configurations x, P_x—almost surely,

the approx diffusion visits $B_\varepsilon(\Gamma)$ during a time period of length T,

infinitely often.

Hence the diffusion approximation visits the oscillatory region infinitely often.
• **Large deviations result**: For large N, the diffusion stays within tubes around the limit cycle during long periods, before eventually leaving such a tube after a time which is of order $e^{N\bar{V}}$.

\bar{V}: quasi-potential, related to control problem: cost of steering the process from the limit cycle to the boundary of the tube around the limit cycle.
Large deviations

- **Large deviations result**: For large N, the diffusion stays within tubes around the limit cycle during long periods, before eventually leaving such a tube after a time which is of order

$$e^{N\bar{V}}.$$

\bar{V}: quasi-potential, related to control problem: cost of steering the process from the limit cycle to the boundary of the tube around the limit cycle.

- Can be made precise in the sense of sample path large deviations for diffusions with small noise, in the sense of Freidlin-Wentzell (*although diffusion is highly degenerate*). Most important point: establish the **necessary control theory** in our framework.
Some simulations of the approximating diffusion in the case $n = 2$
Conclusions

- Infinite memory (of Hawkes processes) and introduction of successive memory terms as auxiliary variables gives rise to hypo-elliptic diffusion approximation and its specific cascade structure.

- This cascade structure implies two things:
 - weak Hörmander condition
 - controllability of the system

- Oscillations appear from the non-linear “McKean-Vlasov”-type structure of the limit system (system whose dynamics depends on its own law) - the dynamics of each single particle do not include any periodic behavior.
• Specific interaction graph structure not necessary for propagation of chaos: other interaction graphs possible (have to be studied)

• What happens if there are periodic changes in the underlying interaction graph?

• Example of a dynamical system where there are several coexisting stable orbits?

• What happens when the synaptic strength (i.e. the factor c_k) changes over time (→ plasticity?)

• And if we add an external signal during some time?
Final remarks on Hawkes processes

- Erlang kernels allow to describe certain Hawkes processes via an associated system of PDMP's.
- Their stability behavior can be easily analyzed.
Some literature

Paper is on arXiv:

- **L.E.** Large deviations for oscillating systems of interacting Hawkes processes in a mean field frame. Soon on arXiv.
Thank you for your attention.