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About the key-words of the title

"Nonsmooth analysis for stochastic optimization: theory, algorithms and

applications in energy”

@ Stochastic optimization : optimization
problems with random variables... in action !
(vs randomized optimization algorithms and
convergence analysis)

@ Nonsmooth : non-differentiable (e.g. max-fct)

— difficult nonsmooth functions call for
cutting-planes algorithms
(vs proximal or conditional gradient algos)

@ Energy : electricity generation (EDF)
with randomness due to renewable sources
(vs distribution, prediction, savings,...)

Nonsmooth optimization algorithm

shadow decentralized
prices productions




About this talk
@ This talk can be seen as a (light, incomplete, biased) introduction to
stochastic optimization, from a nonsmooth analysis perspective
o Bird-eye view
— presentation of advanced algorithms on pictures !

— presentation of real-life industrial problems in words/photos !

@ Many technical details hidden (modeling issues, assumptions,
mathematical details, convergence analysis,...)

@ Emphasis on ideas and applications — with a goal :

advertize nonsmooth optimization for real-life energy problems

@ Let’s pick random topics in this talk: probability functions, eventual
convexity, robust optimization, large-scale heterogeneous problems,
decomposition algorithm, quadratic stabilization,...
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Stochastic optimization: ideas, examples

A domain of applied maths : Mathematical Optimization

@ Mathematical optimization
(=~ the maths of "doing-better” or of the decision)

min  f(x) (objective-function)
g(x) <0 (constraints) /)
x€XCR" /’jf ’

@ Intractable in general... but "easy” for linear optimization (f and g
affine) or more generally for convex optimization (f and g convex)
due to nice geometrical properties (globality, duality, guarantees...)

@ Applications : recent explosion in data science
on top of traditional applications in industry, services,... and energy !

@ Basic example in machine learning or robust regression : LASSO
(f data-fidelity term, g regularizer)

{min S (aTx — b;)? o {min ST (@ x = b))% 4 Alx| e

Xl < o x €R"



Stochastic optimization: ideas, examples
Optimization face to uncertainty

Adding unknown uncertainty &

{ min(xé) f(X,f)

g(x.€) <0 (not well-posed)

Two main ways to model uncertainty

@ Robust optimization: ¢ € = with a known uncertainty set

miny max f(x,§)
g(x,6) <0 forall¢e=

@ Stochastic optimization: & ~ P with a (known) probability law

{ min, E[f(x,&)]
Plg(x,§) <0l > p

for an uncertainty level p (p = 1 is almost-sure)

In practice: modeling is as important as solving the resulting optimization
problem (and both interact ! see forthcoming examples)



Stochastic optimization: ideas, examples

Multi-stage stochastic optimization
@ In some problems, we can take a second decision (= correction)
once the uncertainty is known
X~ €~y

The "recourse” variable y is a random variable depending on &

@ This yields to "two-stage” stochastic optimization problems

{ min,  E[f(x,&y)]

@ Examples from this morning : 2-stage linear
o Generalizes to multi-stage
XOMgl/\/)XlMgz’\/}-~-/\/)XT

Stochastic optimization problems are more complex, but very
structured — to be exploited in solution algorithms !



Stochastic optimization: ideas, examples

Example 1 : hydro-reservoir managment N
. . X / B T
Hydrological valley with N reservoirs -
¢ random inflows @

x decision variables (turbining, pumping)
Vi(t) = V§+ Alx(t) +£(t) volume of reservoir i o

Simplified model, see more in vanAckooij Henrion Moller Zorgati '14

— variable : x € X to be decided upon before observing &
— objective : maximizing remuneration for a price signal 7
— bounds constraints : Vi, t, VI, < Vi(t) < V]

m max

(irrigation, navigability,...)

max 7TTX

]P[Vmin g VO+AX+£< Vmax] 2/7
xeX

probability-constrained optimization problem



Stochastic optimization: ideas, examples

Probability constraints
@ In the example : if we assume & gaussian, we have good properties :
— ©(x) = P[Vinin < Vo + Ax + € < Vimax] is log-concave Prekopa '95
— ¢ is differentiable (when cov. matrix is def. pos.) vanAckooij Henrion '10

— Efficient numerical integration scheme Deak '00
to compute the value ¢(x) together with the gradient Vip(x)
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Stochastic optimization: ideas, examples

Probability constraints

@ In the example : if we assume & gaussian, we have good properties :

— ©(x) = P[Vinin < Vo + Ax + € < Vimax] is log-concave Prekopa '95
— ¢ is differentiable (when cov. matrix is def. pos.) vanAckooij Henrion '10
— Efficient numerical integration scheme Deak '00

to compute the value ¢(x) together with the gradient Vip(x)

@ In general : many theoretical questions on p(x) = P[g(x,§) < 0]
— simple counter-examples show that
continuity, convexity, differentiability of g do not transfert trivially to ¢
— important question in view of optimization :
convexity of the constraint p(x) > p ?

@ In particular : recent result vanAckooij Malick '16
Under mild assumption on g, eventual
convexity holds for a large family of
laws (normal, log-normal, student,...):
there exists p < 1 such that

p<p<1l {x:Plg(x,&) <0] > p} convex



Stochastic optimization: ideas, examples

Example 2 : optimization of electricity generation
@ In France : electricity produced by N ~ 200 production units

nuclear 80% _oil + coal 3% water 17%

udacainiiss |

o Day-to-day optimization of production : finding a minimal cost
production schedule for the next day that satisfies the operational
constraints and that meets customer demand

@ Classical problem : "unit-commitment”

@ Uncertainty on weather conditions
— consumption H
— renewable sources (wind, solar, water) ~
— demand is uncertain




Stochastic optimization: ideas, examples

Deterministic unit-commitment

Simplified model : for N ~ 200 units, on T = 96 = 2 x 48 periods of time

— variable : schedule x = (x,...,xn) € X = Xy x -+ x Xy
— technical constraints : x; € X; i=1,....N
— demand constraints : m* <Y . xf —d*<M' t=1,...,T

objective : linear costs c'x =" ¢;" x;

Hard optimization problem: large-scale, heterogeneous, complex
min ¢’ x
xeX, m<)y,x;—d<M

Approach by duality : decomposition of computation over each unit

min 7T,‘TX,'
x; € X;

(with m; = ¢; + AT X where \ dual variable or price)

how to handle random d = £ in this situation ?‘




Stochastic optimization: ideas, examples

Model 1 : Robust unit-commitment

penalisation cost 1/(d; d — x) (€)
3

A simple robust approach
(VanAckooij Lebbe Malick '16)

2

— get rid of bound constraint L —
. . -3 -2 -1 1 2 3

— penalize instead the worst gap nderprodction 711 overproduction

. T

min ¢’ 'x + rgna_x Zt:“/)(zixf —§t)
€=
xeX
Complex model of uncertainty set = (vs = finite or = = [din, dnax] ')

mand at time £) (GWh)

i Y The model of Minoux 2012
— is finite but of high cardinality

— expresses temporal dependencies

— preserves a fast computability




Stochastic optimization: ideas, examples

Model 2 : Two-stage stochastic unit-commitment 1/2

@ The schedule x is sent to the grid-operator (RTE) before being
activated and before observing uncertainty

@ But in real time, a new production schedule can be sent to the
grid-operator at specific moments in time

o After T periods :

— &1,...,& : the observed net customer load of the previous time
— &r41, ..., &7 ¢ the current best forecast of net customer load after 7
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Model 2 : Two-stage stochastic unit-commitment 1/2

The schedule x is sent to the grid-operator (RTE) before being
activated and before observing uncertainty

But in real time, a new production schedule can be sent to the
grid-operator at specific moments in time

After T periods :

— &1,...,& : the observed net customer load of the previous time
— &r41, ..., &7 ¢ the current best forecast of net customer load after 7

vanAckooij Malick '15 proposes two-stage model

min ¢’y
c(x,€) = yeX, m<y,yi—§<M
y coincides with x on the 7 first steps

The second-stage problem has the same form as the initial problem
with a smaller horizon T — 7

fine operational modeling vs difficult to compute



Stochastic optimization: ideas, examples

Model 2 : Two-stage stochastic unit-commitment 2/2

@ Stochastic optimization problem

xeX, m<Y . xi—d<M

{ min ¢’ x + E[c(x, £)]

o Complexity of ¢(x, &) only allows for simple modeling of randomness

@ VanAckooij Malick '15 uses finite distribution

]P)(Ezgs):ps (5:17---75)
@ (Convex) implicit second-stage function

s
v(x) = Elc(x, )l = Y psc(x, &)

s=1

@ For our numerical experiments (see later) S = 50, 150, 250

problems with more than 1 million of variables and constraints...
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Basic nonsmooth algorithm: cutting-plane method
Cutting plane models and algorithms

Cutting-plane models of implicit function

@ The convex function v only known
partially through an oracle : given an
entry x, it returns v(x) and g € dv(x)

@ From points xi, ..., xx, we can build the cutting plane model for v :

W(x) = max {v()+g' (x—x)}

o Convexity yields : ¥(x) < v(x) for all x

Cutting-plane algorithm (Kelley '60)

@ Instead of minv(x) we solve min Vk(x) to get Xk41
xeX xeX

@ When X is polyhedral this is a mere linear optimization problem

o Cultural note : cutting is a foundational technique of
Operations Research in general
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Cutting-plane algorithm on a picture
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Cutting-plane algorithm on a picture

Y2 Y3 Y4y Ys Y1 Y



Basic nonsmooth algorithm: cutting-plane method

Cutting-plane algorithm on a picture

Qe

2 Y3 Y4y Ys Y1 Y

Convergence in 6 iterations



Basic nonsmooth algorithm: cutting-plane method

Cutting-plane for stochastic optimization : inexact oracles

In our stochastic optimization examples:

@ we do have convex functions
— example 1 : v(x) = — log P[Vimin < Vo + Ax + £ < Vinax]
— example 2 1 v(x) = maxeez >, (3 xf — &)
— example 3 : v(x) = E[c(x,§)] = Zle psc(x,&s)

o we only approximate v(x) and g € dv(x)
— by numerical integration for example 1
— by maximization for example 2

— by dual resolution for example 3
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Cutting-plane for stochastic optimization : inexact oracles

In our stochastic optimization examples:
@ we do have convex functions
— example 1 : v(x) = — log P[Vimin < Vo + Ax + £ < Vinax]
— example 2 : v(x) = maxgez S, (X xf —€F)
— example 3 : v(x) = E[c(x,§)] = Zle psc(x,&s)

o we only approximate v(x) and g € dv(x)
— by numerical integration for example 1
— by maximization for example 2
— by dual resolution for example 3

Cutting-plane algorithms easily extend to inexact oracles

Inexact oracle provides approximate cutting planes: for given x

Vx = V(X) — Nix ("}max Z Ny 2 7/min)
V(y) 2 VX+gXT(y_X)_5X (Emax >5x > O),

When n* = & = 0, we retrieve g, € dv(x)




Basic nonsmooth algorithm: cutting-plane method
Numerical illustration for stochastic unit-commitment
e With real-life EDF model (data from 2013)

— deterministic problem (1 scenario) : around 50000 continuous variables, 27000 binary
variables, and 815000 constraints

— stochastic problem (50 scenarios) : 1,200,000 continuous variables, 700,000 binary
variables, and 20,000,000 constraints

— Out of reach for existing (mixed-integer linear) solvers !
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Numerical illustration for stochastic unit-commitment

e With real-life EDF model (data from 2013)

— deterministic problem (1 scenario) : around 50000 continuous variables, 27000 binary
variables, and 815000 constraints

— stochastic problem (50 scenarios) : 1,200,000 continuous variables, 700,000 binary
variables, and 20,000,000 constraints

— Out of reach for existing (mixed-integer linear) solvers !
o Cutting-plane allows to solve it — in reasonable time ®

o Observation : generation is transferred from inflexible but cheap
units to expensive but flexible units

240)
220) 200|
g 200 g
H <
% 180 5 150
3 H
< 160] =
3 B
s s
§ 10 3 100
5 g
© 120) ©
100 50
80 —— Det. Schedule — Det. Schedule
—— 2Stage Schedule —— 2Stage Schedule
0 20 40 60 80 100 0 20 40 60 80 100

inflexible and cheap expensive and flexible



Basic nonsmooth algorithm: cutting-plane method

Further note on numerical experiments

@ Emphasis on an interest of inexact cutting-plane : hot-restart

@ When increasing the number of scenario:

Number of Sub-pbs calls Average

Scenarios | Nb. iter | 1st Stage 2nd Stage calls
50 4 167 1009 5.88
100 8 360 3461 4.77
250 16 694 14205 3.73

@ Hot-restart yields decrease of sub-pbs calls per scenario and iteration

@ The number of sub-pbs calls remains within reasonable limits.
For comparison, using up to 300 calls is common for deterministic
real-life unit-commitment

@ See more in vanAckooij Malick '15
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Advanced nonsmooth algorithms: bundle methods

Instability of cutting-plane

@ The cutting-plane algorithm is simple... but has several drawbacks
@ Among them : inherent instability, see the picture...

o E.g. it is the case for robust unit-commitment ®
(vs stochastic unit-commitment ©)




Advanced nonsmooth algorithms: bundle methods

Instability of cutting-plane

@ The cutting-plane algorithm is simple... but has several drawbacks
@ Among them : inherent instability, see the picture...

o E.g. it is the case for robust unit-commitment ®
(vs stochastic unit-commitment ©)

QS.,AAAA
~



Advanced nonsmooth algorithms: bundle methods

Instability of cutting-plane

@ The cutting-plane algorithm is simple... but has several drawbacks
@ Among them : inherent instability, see the picture...

o E.g. it is the case for robust unit-commitment ®
(vs stochastic unit-commitment ©)

QS.,AAAA
~



Advanced nonsmooth algorithms: bundle methods

Instability of cutting-plane

@ The cutting-plane algorithm is simple... but has several drawbacks
@ Among them : inherent instability, see the picture...

o E.g. it is the case for robust unit-commitment ®
(vs stochastic unit-commitment ©)

¢




Advanced nonsmooth algorithms: bundle methods

Instability of cutting-plane

@ The cutting-plane algorithm is simple... but has several drawbacks
@ Among them : inherent instability, see the picture...

o E.g. it is the case for robust unit-commitment ®
(vs stochastic unit-commitment ©)

S«




Advanced nonsmooth algorithms: bundle methods

Instability of cutting-plane

@ The cutting-plane algorithm is simple... but has several drawbacks
@ Among them : inherent instability, see the picture...

o E.g. it is the case for robust unit-commitment ®
(vs stochastic unit-commitment ©)

¢




Advanced nonsmooth algorithms: bundle methods

Instability of cutting-plane

@ The cutting-plane algorithm is simple... but has several drawbacks
@ Among them : inherent instability, see the picture...

o E.g. it is the case for robust unit-commitment ®
(vs stochastic unit-commitment ©)

¢




Advanced nonsmooth algorithms: bundle methods

Instability of cutting-plane

@ The cutting-plane algorithm is simple... but has several drawbacks
@ Among them : inherent instability, see the picture...

o E.g. it is the case for robust unit-commitment ®
(vs stochastic unit-commitment ©)

¢




Advanced nonsmooth algorithms: bundle methods

Instability of cutting-plane

@ The cutting-plane algorithm is simple... but has several drawbacks
@ Among them : inherent instability, see the picture...

o E.g. it is the case for robust unit-commitment ®
(vs stochastic unit-commitment ©)

¢




Advanced nonsmooth algorithms: bundle methods
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@ The cutting-plane algorithm is simple... but has several drawbacks
@ Among them : inherent instability, see the picture...
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Advanced nonsmooth algorithms: bundle methods

Stabilized cutting-plane: (level) bundle method

Simple idea : add a quadratic term stabilizing the cutting-plane model
around the 'best’ current point, called stability center Xx

@ prox-bundle methods Lemaréchal 70s-80s
(interpreted as inexact proximal algorithm)

@ level-bundle methods Lemaréchal Nesterov Nemirovski '95

@ many recent improvements and generalizations (around inexactness)
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Stabilized cutting-plane: (level) bundle method

Simple idea : add a quadratic term stabilizing the cutting-plane model
around the 'best’ current point, called stability center Xx

@ prox-bundle methods Lemaréchal 70s-80s
(interpreted as inexact proximal algorithm)

@ level-bundle methods Lemaréchal Nesterov Nemirovski '95

@ many recent improvements and generalizations (around inexactness)

An iteration of level bundle algorithm

1
Xk41 1= argmin {2||X — %2 w(x) < Ly, x € X}

the level Ly := (v,* + v}°¥)/2 middle of v}°¥ lower bound and

u] . ..
v,Y := minigj<k v(x;) upper bound for the minimum of v on X.
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Level bundle algorithm on a picture

Same 1-dimension example :

y1:g)1
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Level bundle algorithm on a picture

Same 1-dimension example :

y1:z)1
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Level bundle algorithm on a picture

Same 1-dimension example :

y1:?91
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Level bundle algorithm on a picture

Same 1-dimension example :

Y2 Y1="11
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Level bundle algorithm on a picture

Same 1-dimension example :
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Level bundle algorithm on a picture

Same 1-dimension example :

Y2 Y1="71="12
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Level bundle algorithm on a picture

Same 1-dimension example :
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Level bundle algorithm on a picture

Same 1-dimension example :

] ) 1
L e ..... AW i ......
|

Y2 Y3=U3 Y1=Y1="12
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Level bundle algorithm on a picture

Same 1-dimension example :

Y2 Y3=U3 Y1=Y1="12
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Level bundle algorithm on a picture

Same 1-dimension example :

Y2 Y3=U3 Y1=Y1=12

convergence in only 4 iterations (vs 6 for cutting-plane)



Advanced nonsmooth algorithms: bundle methods

Numerical illustration for robust unit-commitment : plot

Using quadratic stabilization does stabilize !

See e.g. on one run for robust unit-commitment on the EDF data set

min - c'x + ?@:X Zthﬁ/)(Zixit*gt)

xeX

100
cutting plane -~
stabilized cutting plane

80 |
60
40
20

0

0 50 100 150 200

cutting-plane alg. vs bundle alg. (relative gap / number of iterations)



Advanced nonsmooth algorithms: bundle methods

Numerical illustration for robust unit-commitment : table

More numerical results on the EDF data set

— comparison of iterations (#it) and sub-pbs calls (#calls)
— cutting-plane algorithm vs bundle algorithm

— easy stopping criteria : 5%
(the comparison is even more unbalanced for 1%)

Instance cutting-plane bundle improvement
date #it. calls | #it. calls | #it. «calls
15/01/2013 | 41 536 26 317 | 158% 169%
20/03/2013 | 393 613 103 245 | 382% 250%
13/05/2013 | 764 2315 | 319 974 | 239% 238%
22/08/2013 | 2648 3452 | 356 790 | 744% 347%
25/10/2013 | 724 2163 | 209 1147 | 346% 189%
10/12/2013 | 78 578 34 229 | 229% 252%
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Concluding remarks

Take-home message

@ Nonsmoothness often appear (e.g. in case max-functions)

@ In industrial energy applications, convex functions are often known
implicitly through inexact oracles (vs machine learning)

@ (Stabilized) cutting-plane algorithms are methods of choice
for large-scale applications showing decomposability



Concluding remarks

Take-home message

@ Nonsmoothness often appear (e.g. in case max-functions)

@ In industrial energy applications, convex functions are often known
implicitly through inexact oracles (vs machine learning)

@ (Stabilized) cutting-plane algorithms are methods of choice
for large-scale applications showing decomposability

@ There is active recent research on such methods (inexact
computation, faster convergence, new applications...)

@ These nonsmooth algorithms also method of choice for (hard)
smooth problems |7 e.g. probabilistic constrained optimization



Back to hydro-reservoir

Reservoir 1

o v
max ' x / 7
P[Viin < Vg +Ax+E< V] > 0.8 =
When ¢ gaussian: . T @

— it is a smooth convex problems \
— but the best solution methods are ®
nonsmooth optimization methods !

Comparison of algorithms on the Isére Valley (real-life EDF data)

Concluding remarks

method obj. value P Nb. Iter. CPU time
[InfeasQP] (mins)
Prepoka '03 175222 0.799511 190 1504.7
Kiwiel '08 175237  0.799394 204 627.3
VanA. Sag. '15 175237  0.799418 188 573.5
LNN '95 175235  0.799854 161 529.6
level 175235  0.799604 165 [3] 423.2
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Some references

Material mainly extracted from :
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Eventual convexity of feasible sets for nonlinear probabilistic constraints with elliptically
symmetric distributions
to be submitted, 2016
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Joint chance constrained programming for hydro reservoir management
Optimization and Engineering, 15:509-531, 2014
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More on probability functions

Counter-example of well-behaviour

Let £ ~ N(0,1) be given and consider

$(x) = P[@x + LE > b,

a=[2 3= o] 6= [

Then ¢ is not continuous !

with

because of the presence of
“deterministic” constraints
—1x1 +x0 > —%

the set {z € R™ : g(x,z) = 0} is not of
zero measure (at some x's).




More on probability functions

Evaluating P

Let & ~ N(0,R) and R = LLT.

& = nL{, where 1 has a chi-distribution with m degrees of freedom
and ( is uniformly distributed over S™~1 euclidian unit-sphere of R™

@ As a consequence, for M Lebesgue-mesurable

Plee M= [y ({r>0: v M £0)) du
vesSm—1

Efficient sampling schemes for such integrals Deak 00

In our case M(x) ={z € R™ : g(x,z) <0} is a convex hence
Lebesgue measurable



More on probability functions

Eventual convexity example

In general g: R” x R™ — R is defined by:
n
g(x,z) =z W(x)z +2 Z xiwj' z + b,
i=1
where W a positive semi-definite matrix valued mapping
W(x) = xi W1 + xoWa, where

1 09 1
Wl—( 0.9 1 ) and W2—( 0.7

the correlation matrix R:

1 05
R‘(o.s 1 )

and wi = (—1,1), wp, = (2,3) and b= -3




More on probability functions

Proba constraints are not just plain non-linear constraints

@ ¢ is not known up to arbitrary precision (or would be unreasonably
costly). A (sub-)gradient of ¢ also suffers from numerical
imprecision. Explicit formula allowing for computations with a
trade-off cost/efficiency.

@ An example shows that cutting planes may locally over-estimate the
map (or set):
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More on probability functions

Eventual convexity result

Theorem (Simplified version)

Let g: R" x R™ — R convex in the first argument and "non-distorted”.
Let & ~ E(u, X, 0) be elliptically symmetrically distributed with mean p,
covariance matrix ¥, generator 8 and associated radial distribution R.
Assume also a "generalized concavity” property of Fg.

Then the set
M(p) = {x € R" : Pg(x,£) < 0] > p}

is convex provided that

1 (z*(m, a, 9)5“‘1) z

p=p = Fr gvol

If g is only non-distorted for all x € X, where X is a convex compact set,
then M(p) N X is convex for p > p*, with p*




More on stochastic unit-commitment

Qutline

@ More on stochastic unit-commitment



More on stochastic unit-commitment

Solution by duality for deterministic case

For special case m = M

min  c(x)
xeX, Y.xi—d=0

Lx,\) = Zc,(x,)—i—z/\ (Zx - ) Z(c,(x,)—i—Z/\(x )
() = min L(x,\) = Z m€|n (c, X’)+Z/\ X; —d))

xeX
1

dual resolution by proximal bundle method
prima recovery by efficient heuristics



More on stochastic unit-commitment
State-space model

d; (demand at time t) (GWh)
0 7

v € V, weight wy

average load

.. 2 differents paths
-+* in (G, V) equivalent
to some d € D C R

0 t t t t t t t t t t t { Time ¢ (hour)

@ At each time step t € 7, a set of nodes E; containing both a value
for D; and a weight w;.

e Graph (G, V), with G =, E¢, such that V connects all nodes in E;
to those in E;y; that are not further apart than H,

@ = is the set of all paths in (G, V) satisfying >, wy < Wiy for a
given maximum budget of uncertainty Wyay.

e Card = is huge, but computing the sup over = by a simple
1-dimensional dynamic programming principle.



More on stochastic unit-commitment
Load uncertaincy

We generate the uncertain loads as an average load on top of which we
add a causal time series model (see, e.g., Bruhns et al 2005).

We consider the Gaussian random variable
D(§) =D +¢,
where ¢ is an AR(3) model with Gaussian innovations

The covariance matrix is =2 = (CPS)(S(CP))", where S is a diagonal
matrix with element

D;
Sii = fil =
T £4j=1 b
and CP is the nominal covariance matrix with Cj; = S ¢P
s ifhk=1
o0 = P3P + ¢2 if k=2
K7 0308 + ¢ + 1 ifk=3

Sh 1 Ga—kd?,  otherwise.
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