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About the key-words of the title

”Nonsmooth analysis for stochastic optimization: theory, algorithms and
applications in energy”

1 Stochastic optimization : optimization
problems with random variables... in action !
(vs randomized optimization algorithms and
convergence analysis)

2 Nonsmooth : non-differentiable (e.g. max-fct)

→ difficult nonsmooth functions call for
cutting-planes algorithms
(vs proximal or conditional gradient algos)

3 Energy : electricity generation (EDF)
with randomness due to renewable sources
(vs distribution, prediction, savings,...)

Géométrie et analyse convexe

Fonction convexe

La fonction f : Rn !R[{+1} est convexe si

x1, x2 2 Rn 0 6 ↵ 6 1 f(↵x1 +(1�↵)x2) 6 ↵ f(x1) + (1�↵)f(x2)

ce qui équivaut à :

epi f =
�
(x, t) 2 Rn+1 : f(x) 6 t

 

est un ensemble convexe de Rn+1

x1

epi f

x2
Exemples :

Les fonctions a�nes sont convexes

Un sup de fonctions convexes est convexe

f(x) = sup
i2I

fi(x) convexe

La plus grande valeur propre de X
matrice symétrique

�max(X) = sup
u2sphère

u>X u

f5

epi f

f1

f2

f3

f4

=) non-di↵érentiabilité
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Optimization of electricity 
production 
Executive summary 

Every day, EdF (French Electricity Board) has to 
compute production schedules of its power plants 
for the next day. This is a difficult, large-scale, 
heterogeneous optimization problem. 

Challenge overview 

In the mid eighties, a meeting was organized 
between Inria and EdF R&D. The idea was to let 
EdF present some of their applications, to explore 
possible collaborations. Indeed, EdF has a long 
tradition of scientific work, in particular with 
academics. Their production optimization problem 
was presented among others. Its mathematical 
model was clearly established; even the relevant 
software existed, but the solution approach 
needed improvement. The mathematics at stake 
turned out to perfectly fit with Inria competences. 

Implementation of the initiative 

Collaborative work therefore started immediately. 
No difficulty appeared with administrative issues 
such as intellectual property or industrial 
confidentiality. It was a long-term research, so 
deadlines posed no problem either.  

The problem 

The solution approach is by decomposition: each 
power plant (EdF software) optimizes its own 
production on the basis of ``shadow prices'' 
remunerating it; these prices are iteratively 
updated (Inria software) so as to satisfy the 
balance equation. The working horse to compute 
the prices is a nonsmooth optimization algorithm. 
   

 

   

 
 

 

 

 

   
 

The difficulty was to join the EdF and Inria-
software. This turned out to be harder than 
expected. The model appeared as not mature 
enough and significant bugs were revealed. The 

project was basically abandoned and it is only in 
the mid nineties that intensive collaboration could 
resume on a renewed model.  

Results and achievements 

This time, the collaboration was successful and 
the new software became operational a few years 
later. This relatively long delay was due to 
necessary industrial requirements (mainly aimed 
at achieving reasonable reliability). Substantial 
improvements in cost and robustness were 
achieved. EdF is highly satisfied with this 
collaboration, which continues and will probably 
continue for many years. 
 
Current research focuses on developing more 
accurate models of the power plants, entailing 
more delicate price optimization. 
 
Several academic outcomes resulted from this 
operation: 
• to understand better and to improve highly 
sophisticated optimization methods; 
• to assess these methods in the “real world”, 
thereby introducing them for new applications; 
• to exhibit the practical merits of a mathematical 
theory (convex analysis, duality), generally 
considered so far as highly abstract (and taught 
as such in the university cursus). 

Lessons learned 

Beyond science and techniques, a lesson of this 
“success story” is that an academic-industrial 
collaboration should be undertaken with strong 
mutual esteem and confidence, in both directions. 

 
Sandrine Charousset-Brignol (EDF R&D) 
sandrine.charousset@edf.fr 
 
Grace Doukopoulos (EDF R&D) 
grace.doukopoulos@edf.fr  
 
Claude Lemaréchal (INRIA) 
claude.lemarechal@inrialpes.fr 
 
Jérôme Malick (CNRS, LJK) 
jerome.malick@inrialpes.fr  
 
Jérôme Quenu (EDF R&D) 
jerome.quenu@edf.fr 
 
 

           

shadow   
prices 

decentralized 
productions 

 

 Nonsmooth optimization algorithm 



About this talk

This talk can be seen as a (light, incomplete, biased) introduction to
stochastic optimization, from a nonsmooth analysis perspective

Bird-eye view

– presentation of advanced algorithms on pictures !
– presentation of real-life industrial problems in words/photos !

Many technical details hidden (modeling issues, assumptions,
mathematical details, convergence analysis,...)

Emphasis on ideas and applications – with a goal :

advertize nonsmooth optimization for real-life energy problems

Let’s pick random topics in this talk: probability functions, eventual
convexity, robust optimization, large-scale heterogeneous problems,
decomposition algorithm, quadratic stabilization,...
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Stochastic optimization: ideas, examples

A domain of applied maths : Mathematical Optimization

Mathematical optimization
(' the maths of ”doing-better” or of the decision)





min f (x) (objective-function)
g(x) 6 0 (constraints)
x ∈ X ⊂ Rn

Intractable in general... but ”easy” for linear optimization (f and g
affine) or more generally for convex optimization (f and g convex)
due to nice geometrical properties (globality, duality, guarantees...)

Applications : recent explosion in data science
on top of traditional applications in industry, services,... and energy !

Basic example in machine learning or robust regression : LASSO
(f data-fidelity term, g regularizer)
{

min
∑n

i=1(ai
>x − bi )

2

‖x‖`1 6 µ
or

{
min

∑n
i=1(ai

>x − bi )
2 + λ‖x‖`1

x ∈ Rn



Stochastic optimization: ideas, examples

Optimization face to uncertainty

Adding unknown uncertainty ξ
{

min(x,ξ) f (x , ξ)
g(x , ξ) 6 0

(not well-posed)

Two main ways to model uncertainty

1 Robust optimization: ξ ∈ Ξ with a known uncertainty set
{

minx max
ξ∈Ξ

f (x , ξ)

g(x , ξ) 6 0 for all ξ ∈ Ξ

2 Stochastic optimization: ξ ∼ P with a (known) probability law
{

minx E[f (x , ξ)]
P[g(x , ξ) 6 0] > p

for an uncertainty level p (p = 1 is almost-sure)

In practice: modeling is as important as solving the resulting optimization
problem (and both interact ! see forthcoming examples)



Stochastic optimization: ideas, examples

Multi-stage stochastic optimization

In some problems, we can take a second decision (= correction)
once the uncertainty is known

x ; ξ ; y

The ”recourse” variable y is a random variable depending on ξ

This yields to ”two-stage” stochastic optimization problems
{

minx E[f (x , ξ, y)]
P[g(x , ξ, y) 6 0] > p

Examples from this morning : 2-stage linear

Generalizes to multi-stage

x0 ; ξ1 ; x1 ; ξ2 ; · · ·; xT

Stochastic optimization problems are more complex, but very
structured → to be exploited in solution algorithms !



Stochastic optimization: ideas, examples

Example 1 : hydro-reservoir managment

Hydrological valley with N reservoirs

ξ random inflows

x decision variables (turbining, pumping)

V i (t) = V i
0 +Aix(t) + ξ(t) volume of reservoir i

Di↵erently from the primal-dual family, no additional optimization subproblem must be

solved at each iteration (neither to define the dual variable ↵k nor to obtain fk
lev). In

this method, both selection and compression of the bundle is possible.

Stability Center and Optimality Certificate

Similarly to the unconstrained level bundle method given in [9], a new stability center

x̂k is chosen in the information bundle whenever X k
lev is empty. The stopping test is

identical to the one in [32, 28, 14], checking that minj k F xj ; fk
low is su�ciently small.

Impact of Inexactness

The algorithm is robust to noise, in the sense that no additional trick is required to cope

with inexactness. With an exact oracle, the improvement function is always nonnegative.

Negative values for Fk may arise when the oracle is inexact, in which case the method

terminates with an ⌘h ⌘ �Tol -solution to problem (1b). For lower oracles, driving

to zero the error ⌘k
h for certain iterates named substantial ensures that asymptotically

an exact solution is found; [52].

5 One Problem, Two Formulations
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Figure 1: Schematic Representation of a Hydrovalley
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Simplified model, see more in vanAckooij Henrion Moller Zorgati ’14

– variable : x ∈ X to be decided upon before observing ξ

– objective : maximizing remuneration for a price signal π

– bounds constraints : ∀i , t, V i
min 6 V i (t) 6 V i

max (irrigation, navigability,...)





max π>x
P[Vmin 6 V0 + Ax + ξ 6 Vmax] > p
x ∈ X

probability-constrained optimization problem



Stochastic optimization: ideas, examples

Probability constraints

In the example : if we assume ξ gaussian, we have good properties :

– ϕ(x) = P[Vmin 6 V0 + Ax + ξ 6 Vmax] is log-concave Prekopa ’95

– ϕ is differentiable (when cov. matrix is def. pos.) vanAckooij Henrion ’10

– Efficient numerical integration scheme Deak ’00
to compute the value ϕ(x) together with the gradient ∇ϕ(x)

In general : many theoretical questions on ϕ(x) = P[g(x , ξ) 6 0]

– simple counter-examples show that
continuity, convexity, differentiability of g do not transfert trivially to ϕ

– important question in view of optimization :
convexity of the constraint ϕ(x) > p ?

In particular : recent result vanAckooij Malick ’16 :

Under mild assumption on g , eventual
convexity holds for a large family of
laws (normal, log-normal, student,...) :
there exists p̄ < 1 such that

p̄ 6 p 6 1 {x : P[g(x , ξ) 6 0] > p} convex



Stochastic optimization: ideas, examples

Probability constraints

In the example : if we assume ξ gaussian, we have good properties :

– ϕ(x) = P[Vmin 6 V0 + Ax + ξ 6 Vmax] is log-concave Prekopa ’95

– ϕ is differentiable (when cov. matrix is def. pos.) vanAckooij Henrion ’10

– Efficient numerical integration scheme Deak ’00
to compute the value ϕ(x) together with the gradient ∇ϕ(x)

In general : many theoretical questions on ϕ(x) = P[g(x , ξ) 6 0]

– simple counter-examples show that
continuity, convexity, differentiability of g do not transfert trivially to ϕ

– important question in view of optimization :
convexity of the constraint ϕ(x) > p ?

In particular : recent result vanAckooij Malick ’16 :

Under mild assumption on g , eventual
convexity holds for a large family of
laws (normal, log-normal, student,...) :
there exists p̄ < 1 such that

p̄ 6 p 6 1 {x : P[g(x , ξ) 6 0] > p} convex



Stochastic optimization: ideas, examples

Probability constraints

In the example : if we assume ξ gaussian, we have good properties :

– ϕ(x) = P[Vmin 6 V0 + Ax + ξ 6 Vmax] is log-concave Prekopa ’95

– ϕ is differentiable (when cov. matrix is def. pos.) vanAckooij Henrion ’10

– Efficient numerical integration scheme Deak ’00
to compute the value ϕ(x) together with the gradient ∇ϕ(x)

In general : many theoretical questions on ϕ(x) = P[g(x , ξ) 6 0]

– simple counter-examples show that
continuity, convexity, differentiability of g do not transfert trivially to ϕ

– important question in view of optimization :
convexity of the constraint ϕ(x) > p ?

In particular : recent result vanAckooij Malick ’16 :

Under mild assumption on g , eventual
convexity holds for a large family of
laws (normal, log-normal, student,...) :
there exists p̄ < 1 such that

p̄ 6 p 6 1 {x : P[g(x , ξ) 6 0] > p} convex



Stochastic optimization: ideas, examples

Example 2 : optimization of electricity generation

In France : electricity produced by N ' 200 production units

nuclear 80% oil + coal 3% water 17%

Day-to-day optimization of production : finding a minimal cost
production schedule for the next day that satisfies the operational
constraints and that meets customer demand

Classical problem : ”unit-commitment”

Uncertainty on weather conditions
→ consumption
→ renewable sources (wind, solar, water)
→ demand is uncertain
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Stochastic optimization: ideas, examples

Deterministic unit-commitment

Simplified model : for N ' 200 units, on T = 96 = 2 ∗ 48 periods of time

– variable : schedule x = (x1, . . . , xN) ∈ X = X1 × · · · × XN

– technical constraints : xi ∈ Xi i = 1, . . . ,N

– demand constraints : mt 6
∑

i x
t
i − d t 6 M t t = 1, . . . ,T

– objective : linear costs c>x =
∑

i ci
>xi

Hard optimization problem: large-scale, heterogeneous, complex
{

min c>x
x ∈ X , m 6

∑
i xi − d 6 M

Approach by duality : decomposition of computation over each unit
{

min πi
>xi

xi ∈ Xi

(with πi = ci + A>λ where λ dual variable or price)

how to handle random d = ξ in this situation ?



Stochastic optimization: ideas, examples

Model 1 : Robust unit-commitment

A simple robust approach
(VanAckooij Lebbe Malick ’16)

– get rid of bound constraint

– penalize instead the worst gap

2 DEFINITION AND MOTIVATION

1

2

3

�1

1 2 3�1�2�3

underproduction overproduction

penalisation cost  (d; d� x) (e)

d� x (MWh)

Figure 2 – A simple one-dimensional two-segments penalization function.
Here we define  as  (d; x) =

PT
t=1  t(d; x) with  t(d; x) = max(↵(dt � xt), �(dt � xt)) with

↵ < 0 and � > 0 and |↵| > |�|. In this definition of  (d; x) we see that underproduction will cost
more than overproduction, this reflects the fact that if we have more electricity than requested,
we can sell this. And in the other case, we will have to buy electricity on the market at high
prices.

following definition of  .
(this definition may seem complex but it is not important for the comprehension of the next
sections)

 (x) = sup
d2D

TX

t=1

max
i=1,...,6

(ai(dt � (Ax)t) + bi), (2)

where ai, bi 2 R and A 2MT,n⇥T (R).

Having this in mind we can now define the so-called (2-stage) robust optimization model I
have studied :

min
x2Rn⇥T

f(x) +  (x)

s.t. x 2 X1

(3)

As we can see, we now have an optimization problem which contains itself another optimi-
zation problem ( (x) = sup

d2D
. . .). This is the principle of the « two-stage » optimization : in the

« first-stage » we minimize other the set X1 and with the obtained schedule we observe which d
is selected during the « second-stage » by maximizing other the uncertainty set D. Computing
 (·; x) is then seen as the recourse action.

Depending on the shape of the set D it is possible to establish an oracle for the function  ,
i.e, a numerical algorithm that computes the value of and a sub-gradient of  at x.

2.3 The uncertainty set D and link with two-stage optimization

Here the second-stage is simple and explicit via  , which differs from other approaches (the
one of [14] in particular). Note that Dom( ) = Rn⇥T ; this is said that complete recourse decisions
exist with respect to market conditions, which is a strong assumption (not met in practice).

There are at least three options for the uncertainty set D ✓ RT :

1. the set D has an infinite cardinal and is defined as a band around the average demand :
D = {d 2 RT , maxt=1...T |dt �Dt|  k} with D the average load and k > 0. In this case, it
is possible to provide an explicit description of (x), giving a simpler penalization function2.

2 see A.2 for details of calculations 6/24

{
min c>x + max

ξ∈Ξ

∑T
t=1 ψ

(∑
i x

t
i − ξt

)

x ∈ X

Complex model of uncertainty set Ξ (vs Ξ finite or Ξ = [dmin, dmax]T )
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The model of Minoux 2012

– is finite but of high cardinality

– expresses temporal dependencies

– preserves a fast computability
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Model 2 : Two-stage stochastic unit-commitment 1/2

The schedule x is sent to the grid-operator (RTE) before being
activated and before observing uncertainty

But in real time, a new production schedule can be sent to the
grid-operator at specific moments in time

After τ periods :

– ξ1, ..., ξτ : the observed net customer load of the previous time
– ξτ+1, ..., ξT : the current best forecast of net customer load after τ

vanAckooij Malick ’15 proposes two-stage model

c(x , ξ) =





min c>y
y ∈ X , m 6

∑
i yi − ξ 6 M

y coincides with x on the τ first steps

The second-stage problem has the same form as the initial problem
with a smaller horizon T − τ

fine operational modeling vs difficult to compute
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Stochastic optimization: ideas, examples

Model 2 : Two-stage stochastic unit-commitment 2/2

Stochastic optimization problem

{
min c>x + E[c(x , ξ)]
x ∈ X , m 6

∑
i xi − d 6 M

Complexity of c(x , ξ) only allows for simple modeling of randomness

VanAckooij Malick ’15 uses finite distribution

P(ξ = ξs) = ps (s = 1, . . . ,S)

(Convex) implicit second-stage function

v(x) = E[c(x , ξ)] =
S∑

s=1

psc(x , ξs)

For our numerical experiments (see later) S = 50, 150, 250
problems with more than 1 million of variables and constraints...
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Basic nonsmooth algorithm: cutting-plane method

Cutting plane models and algorithms

Cutting-plane models of implicit function

The convex function v only known
partially through an oracle : given an
entry x , it returns v(x) and g ∈ ∂v(x)

From points x1, ..., xk , we can build the cutting plane model for v :

v̌k(x) := max
j=1,...,k

{v(xj) + gj
>(x − xj)}

Convexity yields : v̌k(x) 6 v(x) for all x

Cutting-plane algorithm (Kelley ’60)

Instead of min
x∈X

v(x) we solve min
x∈X

v̌k(x) to get xk+1

When X is polyhedral this is a mere linear optimization problem

Cultural note : cutting is a foundational technique of
Operations Research in general



Basic nonsmooth algorithm: cutting-plane method

Cutting-plane algorithm on a picture

Convergence in 6 iterations
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Basic nonsmooth algorithm: cutting-plane method

Cutting-plane for stochastic optimization : inexact oracles

In our stochastic optimization examples:

we do have convex functions

– example 1 : v(x) = − log P[Vmin 6 V0 + Ax + ξ 6 Vmax]

– example 2 : v(x) = maxξ∈Ξ

∑T
t=1 ψ

(∑
i x

t
i − ξt

)
– example 3 : v(x) = E[c(x , ξ)] =

∑S
s=1 psc(x , ξs)

we only approximate v(x) and g ∈ ∂v(x)

– by numerical integration for example 1

– by maximization for example 2

– by dual resolution for example 3

Cutting-plane algorithms easily extend to inexact oracles

Inexact oracle provides approximate cutting planes: for given x

vx = v(x)− ηx (ηmax > ηx > ηmin)

v(y) > vx + gx
>(y − x)− εx (εmax > εx > 0),

When ηx = εx = 0, we retrieve gx ∈ ∂v(x)
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Basic nonsmooth algorithm: cutting-plane method

Numerical illustration for stochastic unit-commitment

With real-life EDF model (data from 2013)
– deterministic problem (1 scenario) : around 50000 continuous variables, 27000 binary

variables, and 815000 constraints

– stochastic problem (50 scenarios) : 1,200,000 continuous variables, 700,000 binary

variables, and 20,000,000 constraints

→ Out of reach for existing (mixed-integer linear) solvers !

Cutting-plane allows to solve it – in reasonable time ,

Observation : generation is transferred from inflexible but cheap
units to expensive but flexible unitsAnn Oper Res
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Fig. 4 Comparison of generation schedules given by our two-stage formulation and the deterministic one. a
Inflexible plant, b flexible plant, c hydro valley 1, d hydro valley 2

Table 3 Numerical results of the
algorithm versus its multi-cuts
version : ratio of the number of
iterations increase (iteration
increase), the difference of oracle
calls per stage normalized by the
total number of iterations for the
first stage (1st stage cost), and the
same difference for the second
stage (2nd stage cost)

Instance Heuristic Iteration
increase (%)

1st stage
cost (%)

2nd stage
cost (%)

Low CTI 30.0 3.66 1.95

CTD 33.3 −19.80 −5.11

RH 25.0 2.97 −1.96

allH −52.5 −9.42 −2.42

Medium CTI 44.4 0.36 6.13

CTD 330.0 4.44 −2.13

RH −38.5 0.82 1.45

allH 44.4 0.36 6.13

High CTI 52.6 −49.37 −12.61

CTD −22.2 −27.27 −6.14

RH 12.5 −1.44 0.60

allH 89.5 −50.61 −12.32

Average 45.72 −12.11 −2.20
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Basic nonsmooth algorithm: cutting-plane method

Numerical illustration for stochastic unit-commitment

With real-life EDF model (data from 2013)
– deterministic problem (1 scenario) : around 50000 continuous variables, 27000 binary

variables, and 815000 constraints

– stochastic problem (50 scenarios) : 1,200,000 continuous variables, 700,000 binary

variables, and 20,000,000 constraints

→ Out of reach for existing (mixed-integer linear) solvers !

Cutting-plane allows to solve it – in reasonable time ,

Observation : generation is transferred from inflexible but cheap
units to expensive but flexible unitsAnn Oper Res
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Fig. 4 Comparison of generation schedules given by our two-stage formulation and the deterministic one. a
Inflexible plant, b flexible plant, c hydro valley 1, d hydro valley 2
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Basic nonsmooth algorithm: cutting-plane method

Further note on numerical experiments

Emphasis on an interest of inexact cutting-plane : hot-restart

When increasing the number of scenario:

Number of Sub-pbs calls Average
Scenarios Nb. iter 1st Stage 2nd Stage calls

50 4 167 1009 5.88
100 8 360 3461 4.77
250 16 694 14205 3.73

Hot-restart yields decrease of sub-pbs calls per scenario and iteration

The number of sub-pbs calls remains within reasonable limits.
For comparison, using up to 300 calls is common for deterministic
real-life unit-commitment

See more in vanAckooij Malick ’15
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Instability of cutting-plane

The cutting-plane algorithm is simple... but has several drawbacks

Among them : inherent instability, see the picture...

E.g. it is the case for robust unit-commitment /
(vs stochastic unit-commitment ,)
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Advanced nonsmooth algorithms: bundle methods

Stabilized cutting-plane: (level) bundle method

Simple idea : add a quadratic term stabilizing the cutting-plane model
around the ’best’ current point, called stability center x̂k

prox-bundle methods Lemaréchal 70s-80s
(interpreted as inexact proximal algorithm)

level-bundle methods Lemaréchal Nesterov Nemirovski ’95

many recent improvements and generalizations (around inexactness)

An iteration of level bundle algorithm

xk+1 := argmin

{
1

2
‖x − x̂k‖2 : v̌k(x) 6 Lk , x ∈ X

}

the level Lk := (vupk + vlowk )/2 middle of vlowk lower bound and
vupk := min16j6k v(xj) upper bound for the minimum of v on X .
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Level bundle algorithm on a picture

Same 1-dimension example :

convergence in only 4 iterations (vs 6 for cutting-plane)
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Advanced nonsmooth algorithms: bundle methods

Numerical illustration for robust unit-commitment : plot

Using quadratic stabilization does stabilize !

See e.g. on one run for robust unit-commitment on the EDF data set{
min c>x + max

ξ∈Ξ

∑T
t=1 ψ

(∑
i x

t
i − ξt

)

x ∈ X
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Advanced nonsmooth algorithms: bundle methods

Numerical illustration for robust unit-commitment : table

More numerical results on the EDF data set

– comparison of iterations (#it) and sub-pbs calls (#calls)

– cutting-plane algorithm vs bundle algorithm

– easy stopping criteria : 5%
(the comparison is even more unbalanced for 1%)

Instance cutting-plane bundle improvement
date # it. calls # it. calls # it. calls

15/01/2013 41 536 26 317 158% 169%
20/03/2013 393 613 103 245 382% 250%
13/05/2013 764 2315 319 974 239% 238%
22/08/2013 2648 3452 356 790 744% 347%
25/10/2013 724 2163 209 1147 346% 189%
10/12/2013 78 578 34 229 229% 252%
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Concluding remarks

Take-home message

1 Nonsmoothness often appear (e.g. in case max-functions)

2 In industrial energy applications, convex functions are often known
implicitly through inexact oracles (vs machine learning)

3 (Stabilized) cutting-plane algorithms are methods of choice
for large-scale applications showing decomposability

4 There is active recent research on such methods (inexact
computation, faster convergence, new applications...)

5 These nonsmooth algorithms also method of choice for (hard)
smooth problems !? e.g. probabilistic constrained optimization
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Concluding remarks

Back to hydro-reservoir

{
max π>x
P[V i

min 6 V i
0 + Ax + ξ 6 V i

max] > 0.8

When ξ gaussian:

– it is a smooth convex problems

– but the best solution methods are
nonsmooth optimization methods !

Di↵erently from the primal-dual family, no additional optimization subproblem must be

solved at each iteration (neither to define the dual variable ↵k nor to obtain fk
lev). In

this method, both selection and compression of the bundle is possible.

Stability Center and Optimality Certificate

Similarly to the unconstrained level bundle method given in [9], a new stability center

x̂k is chosen in the information bundle whenever X k
lev is empty. The stopping test is

identical to the one in [32, 28, 14], checking that minj k F xj ; fk
low is su�ciently small.

Impact of Inexactness

The algorithm is robust to noise, in the sense that no additional trick is required to cope

with inexactness. With an exact oracle, the improvement function is always nonnegative.

Negative values for Fk may arise when the oracle is inexact, in which case the method

terminates with an ⌘h ⌘ �Tol -solution to problem (1b). For lower oracles, driving

to zero the error ⌘k
h for certain iterates named substantial ensures that asymptotically

an exact solution is found; [52].

5 One Problem, Two Formulations
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Figure 1: Schematic Representation of a Hydrovalley
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Comparison of algorithms on the Isère Valley (real-life EDF data)

method obj. value P Nb. Iter. CPU time
[InfeasQP] (mins)

Prepoka ’03 175222 0.799511 190 1504.7
Kiwiel ’08 175237 0.799394 204 627.3

VanA. Sag. ’15 175237 0.799418 188 573.5
LNN ’95 175235 0.799854 161 529.6

level 175235 0.799604 165 [3] 423.2
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More on probability functions

Counter-example of well-behaviour

Let ξ ∼ N(0, 1) be given and consider

φ(x) := P[Qx + Lξ > b],

with

Q =

[
2 1
−1 1

]
, L =

[
−1
0

]
, b =

[
0
− 1

2

]

Then φ is not continuous !

because of the presence of
“deterministic” constraints
−1x1 + x2 > − 1

2

the set {z ∈ Rm : g(x , z) = 0} is not of
zero measure (at some x ’s).



More on probability functions

Evaluating P

Let ξ ∼ N(0,R) and R = LL>.

ξ = ηLζ, where η has a chi-distribution with m degrees of freedom
and ζ is uniformly distributed over Sm−1 euclidian unit-sphere of Rm

As a consequence, for M Lebesgue-mesurable

P[ξ ∈ M] =

∫

v∈Sm−1

µη ({r > 0 : rLv ∩M 6= ∅}) dµζ

Efficient sampling schemes for such integrals Deak 00

In our case M(x) = {z ∈ Rm : g(x , z) 6 0} is a convex hence
Lebesgue measurable



More on probability functions

Eventual convexity example

In general g : Rn × Rm → R is defined by:

g(x , z) := z>W (x)z + 2
n∑

i=1

xiwi
>z + b,

where W a positive semi-definite matrix valued mapping

W (x) = x1W1 + x2W2, where

W1 =

(
1 0.9

0.9 1

)
and W2 =

(
1 −0.7

−0.7 1

)
.

the correlation matrix R:

R =

(
1 0.5

0.5 1

)
.

and w1 = (−1, 1), w2 = (2, 3) and b = −3



More on probability functions

Proba constraints are not just plain non-linear constraints

ϕ is not known up to arbitrary precision (or would be unreasonably
costly). A (sub-)gradient of ϕ also suffers from numerical
imprecision. Explicit formula allowing for computations with a
trade-off cost/efficiency.

An example shows that cutting planes may locally over-estimate the
map (or set):



More on probability functions

Eventual convexity result

Theorem (Simplified version)

Let g : Rn × Rm→R convex in the first argument and ”non-distorted”.
Let ξ ∼ E (µ,Σ, θ) be elliptically symmetrically distributed with mean µ,
covariance matrix Σ, generator θ and associated radial distribution R.
Assume also a ”generalized concavity” property of FR .

Then the set

M(p) = {x ∈ Rn : P[g(x , ξ) 6 0] > p}

is convex provided that

p > p∗ :=
1

4
FR

(z∗(m, α, θ)δnd

δvol

)
+

3

4

If g is only non-distorted for all x̄ ∈ X, where X is a convex compact set,
then M(p) ∩ X is convex for p > p∗, with p∗
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More on stochastic unit-commitment

Solution by duality for deterministic case

For special case m = M

{
min c(x)
x ∈ X ,

∑
i xi − d = 0

L(x , λ) :=
∑

i

ci (xi ) +
∑

t

λt
(∑

i

x ti − d t
)

=
∑

i

(
ci (xi ) +

∑

t

λt(x ti − d t)
)

θ(λ) := min
x∈X

L(x , λ) =
∑

i

min
xi∈Xi

(
ci (xi ) +

∑

t

λt(x ti − d t)
)

dual resolution by proximal bundle method
prima recovery by efficient heuristics



More on stochastic unit-commitment

State-space model
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2 differents paths

b

vt,i ∈ V , weight wt,i

Time t (hour)

dt (demand at time t) (GWh)

in (G, V ) equivalent
to some d ∈ D ⊂ RT

At each time step t ∈ τ , a set of nodes Et containing both a value
for Dt and a weight wt .

Graph (G ,V ), with G =
⋃

t Et , such that V connects all nodes in Et

to those in Et+1 that are not further apart than H,

Ξ is the set of all paths in (G ,V ) satisfying
∑

t wt 6 Wmax for a
given maximum budget of uncertainty Wmax.

Card Ξ is huge, but computing the sup over Ξ by a simple
1-dimensional dynamic programming principle.



More on stochastic unit-commitment

Load uncertaincy

We generate the uncertain loads as an average load on top of which we
add a causal time series model (see, e.g., Bruhns et al 2005).

We consider the Gaussian random variable

D(ξ) = D̄ + ζ,

where ζ is an AR(3) model with Gaussian innovations

The covariance matrix is ΣD = (CDS)(S(CD))
>

, where S is a diagonal
matrix with element

Sii = f
D̄i

1
T

∑T
j=1 D̄j

and CD is the nominal covariance matrix with Cji =
∑j−i+1

k=1 φDk

φDk =





φ3 if k = 1
φ3φ

D
1 + φ2 if k = 2

φ3φ
D
2 + φ2φ

D
1 + φ1 if k = 3∑3

k=1 φ4−kφDj−k otherwise.
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