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- ma recherche s’inscrit dans le contexte de l’analyse exploratoire des donnees, dont l’objectif est l’etude descriptive des structures sous-jacentes aux donnees en vue de leur interpretation ou de leur comparaison. - dans mon cas je m’interesse surtout aux donnees quantitatives de nature geometrique, materialisees generalement par des nuages de points munis de metriques ou de mesures de similariteGeometric Data
Input: point cloud equipped with a metric or (dis-)similarity measure

data point ≡ image/patch, geometric shape, protein conformation, patient, LinkedIn user...
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Goal: describe the structure(s)
underlying the data, for interpre-
tation or summary



Challenges
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Noise

Dimensionality

Scale

Rk

Rd



Challenges

3

(source: [Lee, Pederson, Mumford 2003])

4 million data points in R9

Motivation: study cognitive representation
of space of images

(source: [Carlsson, Ishkhanov, de Silva, Zomorodian 2008])

Topology



PCA Isomap

Challenges

3

(source: [Lee, Pederson, Mumford 2003])

4 million data points in R9

Motivation: study cognitive representation
of space of images

Topology



C’est de ce cette constatation qu’est nee l’analyse topologique des donnees, dont le but est d’identifier et d’encoder la topologie des objets sous-jacents aux donnees.

like homology groups, or the dimension of their free part (called Betti numbers)

Topological Data Analysis (TDA)

4

topological invariants for classification

β0 = β2 = 1
β1 = 2

Algebraic topology in the 20th century

Algebraic topology in the 21st century

β0 β1 β2

compact set

triangulation

point cloud

topological descriptors for inference and comparison



C’est de ce cette constatation qu’est nee l’analyse topologique des donnees, dont le but est d’identifier et d’encoder la topologie des objets sous-jacents aux donnees.Topological Data Analysis (TDA)
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Algebraic topology in the 21st century

β0 β1 β2

compact set

point cloud

topological descriptors for inference and comparison

Properties of topological descriptors:

• invariant under coordinate changes

• stable with respect to perturbations

• informative



This is our goal at large. To achieve it, we use concepts and tools from algebraic topology (A.T.).The TDA community

5

(as of 2002)

Stanford

Duke

(G. Carlsson)

(H. Edelsbrunner)

• 2 research groups (5-10 researchers)



This is our goal at large. To achieve it, we use concepts and tools from algebraic topology (A.T.).The TDA community
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Stanford

IMA, TTI, OSU, U. Conn

Duke

U. Penn

(as of 2016)

Pomona

Rutgers IST Austria (H. Edelsbrunner)

Jagiellonian U.

(G. Carlsson. etc.)

Edinburgh

ETH, U. Bologna

Technion(H. Edelsbrunner, etc.)

• 50-100 researchers working on theoretical foundations

• 200-300 researchers at the interface with applications

• very successful applications and company (Ayasdi)

CIMAT

Tohoku U.

U. Q.

MPI, TUM



The TDA pipeline at a glance

6

0

∞

point cloud

proximity rule homology

descriptor (barcode)

filtration (nested family of spaces)

• visualization (unsupervised)

• summary (supervised)



The TDA pipeline at a glance
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0

∞

point cloud

proximity rule homology

descriptor (barcode)

3 pillars to the theory (topological persistence):

• decomposition theorems (∃ barcodes)

• algorithms (computation of barcodes)

• stability theorems (barcodes as stable descriptors)

filtration (nested family of spaces)



Topological persistence in a nutshell
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f : X → R

persistence

Dg f

X topological space

∞

X

R

f

signature: persistence diagram

encodes the topological structure of the pair (X, f)
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Inside the black box (X topological space, f : X → R):

Topological persistence in a nutshell

7

f



X

R

Inside the black box (X topological space, f : X → R):
• Nested family (filtration) of sublevel-sets Fα = f−1((−∞, α]) for α ∈ R.

• Track evolution of topology throughout the family.
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X

R

Inside the black box (X topological space, f : X → R):
• Nested family (filtration) of sublevel-sets Fα = f−1((−∞, α]) for α ∈ R.

• Track evolution of topology throughout the family.

• Finite set of intervals (barcode) encodes births/deaths of topological features.

Topological persistence in a nutshell
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α

β

X

R

Inside the black box (X topological space, f : X → R):

α

β

∞

• Nested family (filtration) of sublevel-sets Fα = f−1((−∞, α]) for α ∈ R.

• Track evolution of topology throughout the family.

• Finite set of intervals (barcode) encodes births/deaths of topological features.

Topological persistence in a nutshell

7

(diagram)
f



Topological persistence in a nutshell

7

Example:

X = Rn, K ⊂ Rn compact

f : Rn → R

x 7→ miny∈K ‖x− y‖2



Topological persistence in a nutshell

7

Example: sampled periodic curve in the 2d flat torus, embedded into R4 through the Clifford embedding Note: find pictorial representation of Clifford torus on the Internet

(R
m

o
d
Z)

2 (u, v) 7→ 1√
2
(cos(2πu), sin(2πu), cos(2πv), sin(2πv))

⊂
S3
⊂
R
4

source: http://http://en.wikipedia.org/wiki/Clifford_torus
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(spiral winding around the flat torus)
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Inside the black box (X topological space, f : X → R):
• Nested family (filtration) of sublevel-sets Fα = f−1((−∞, α]) for α ∈ R.

• Track evolution of topology throughout the family.

• Finite set of intervals (barcode) encodes births/deaths of topological features.

Topological persistence in a nutshell

7

the functor is parametrized by a field of coefficients, omitted in the notations

F1 ⊆ F2 ⊆ F3 ⊆ F4 ⊆ F5 · · ·

(homology functor)

(persistence) module: H∗(F1)→ H∗(F2)→ H∗(F3)→ H∗(F4)→ H∗(F5) · · ·

topological level

algebraic levelalgebraic level
k

filtration:



Topological persistence in a nutshell
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(persistence) module: H∗(F1)→ H∗(F2)→ H∗(F3)→ H∗(F4)→ H∗(F5) · · ·

forward means that all arrows i→ j satisfy i ≤ j, with the relation i ≤ j ≤ kĩ ≤ k

Theorem. [Gabriel ’72, Auslander ’74, · · · , Webb ’85, · · · , Crawley-Boevey ’12]

Under some technical conditions, a persistence module V decomposes as a direct
sum of interval modules I[b∗, d∗]:

0
0 // · · · 0 // 0 0 // k 1 // · · · 1 // k 0 // 0 0 // · · · 0 // 0︸ ︷︷ ︸

i<b∗
︸ ︷︷ ︸

[b∗, d∗]

︸ ︷︷ ︸
i>d∗

in the following cases:

• T is finite [Gabriel 1972] [Auslander 1974],

• V is pointwise finite-dimensional (every space Vt has finite dimension)
[Webb 1985] [Crawley-Boevey 2012].

Moreover, when it exists, the decomposition is unique up to isomorphism and
permutation of the terms [Azumaya 1950].

V ∼=
⊕
j∈J

I[b∗j , d∗j ]
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Topological persistence in a nutshell
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Example: sampled periodic curve in the 2d flat torus, embedded into R4 through the Clifford embedding Note: find pictorial representation of Clifford torus on the Internet

(R
m

o
d
Z)

2 (u, v) 7→ 1√
2
(cos(2πu), sin(2πu), cos(2πv), sin(2πv))

(2000 data points)



X

R

Topological persistence in a nutshell

7

f
∞

g

Theorem: [Cohen-Steiner et al. 2005, Chazal et al. 2009]

For any tame functions f, g : X → R,

d∞B (Dg f,Dg g) ≤ ‖f − g‖∞

(bottleneck distance)
R

(W∞ with a twist)



try to define statistical quantities (e.g. Fréchet means) directly in the space of persistence diagrams

define what the Fréchet mean of a collection of diagrams would be on the board

Statistics on the space of persistence diagrams

7

Defining means (Fréchet means):

Given D1, · · · , Dn: persistence diagrams, is the following set empty?

arg min
D

n∑
i=1

Wp(D,Di)
2

View persistence diagrams as discrete measures

Consider the p-th Wasserstein distance with a twist

Note: the space of persistence diagrams is not a linear space
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try to define statistical quantities (e.g. Fréchet means) directly in the space of persistence diagrams

define what the Fréchet mean of a collection of diagrams would be on the board

therefore, this line of work more or less died out now

Statistics on the space of persistence diagrams

7

Defining means (Fréchet means):

Theorem [Turner et al. 2012]: For any finite p ≥ 1, the space of per-
sistence diagrams equipped with Wp is Polish (complete and separable).

Corollary: Fréchet means exist... but are not unique (+hard to compute)

Given D1, · · · , Dn: persistence diagrams, is the following set empty?

arg min
D

n∑
i=1

Wp(D,Di)
2

View persistence diagrams as discrete measures

Consider the p-th Wasserstein distance with a twist

Note: the space of persistence diagrams is not a linear space



basically, we push the measure on the initial topological space onto the space of persistence diagrams via the filtration+decomposition operator. Now, a random variable of law µ×n is mapped to a random variable taking values in the space of persistence diagrams

∞

0
0

X̂n F(X̂n)

DgF(X̂n)

(X, dX) compact metric space

µ probability measure with suppµ = X

Sample n points iid
according to µ.

Questions:

• Statistical properties of the estimator DgF(X̂n) ?

Statistics via push-forwards

8

• Convergence to the ground truth DgF(X) ? Deviation bounds?



∞

0
0

X̂n F(X̂n)

DgF(X̂n)

(X, dX) compact metric space

µ probability measure with suppµ = X

Sample n points iid
according to µ.

Stability thm: dB(DgF(X̂n),DgF(X)) ≤ 2dH(X̂n, X)

P
(

dB
(

DgF(X̂n),DgF(X),
)
> ε
)
≤ P

(
dH(X̂n, X) >

ε

2

)⇒ for any ε > 0,

Statistics via push-forwards

8



X̂n F(X̂n)(X, dX , µ) n points sampled
i.i.d. according to µ.

For a, b > 0, µ satisfies the (a, b)-standard assumption if for any x ∈ X and any
r > 0, we have µ(B(x, r)) ≥ min(arb, 1).

Theorem [Chazal, Glisse, Labruère, Michel 2014-15]:

If µ is (a, b)-standard then for any ε > 0:

Deviation inequality

9

P
(

dB
(

DgF(X̂n),DgF(X)
)
> ε
)
≤ 8b

aεb
exp(−naεb)

Corollary [Chazal, Glisse, Labruère, Michel 2014-15]:

sup
µ∈P

E
[
dB

(
DgF(X̂n), DgF(X)

)]
≤ C

(
logn

n

)1/b

,

where C depends only on a, b. Moreover, the estimator DgF(X̂n) is minimax optimal (up
to a logn factor) on the space P of (a, b)-standard probability measures on X.

/ rate of convergence



X̂n F(X̂n)(X, dX , µ) n points sampled
i.i.d. according to µ.

For a, b > 0, µ satisfies the (a, b)-standard assumption if for any x ∈ X and any
r > 0, we have µ(B(x, r)) ≥ min(arb, 1).

Deviation inequality

9

/ rate of convergence

→ subsampling / bootstrap → confidence regions, etc.

signal

noise



Mapper

same principle as persistence: summarize the topological structure of a map f : X → R

[Singh, Mémoli, Carlsson 2007]



Mapper

get a higher-level understanding of
the structure of data

visualize topology on
the data directly

avoid paying the
algorithmic price
of persistence

exhibit relations between
clusters, variables, etc.

same principle as persistence: summarize the topological structure of a map f : X → R

[Singh, Mémoli, Carlsson 2007]



Mapper in the continuous setting

10

X

f

R

I
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X

f

R

I

U
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R

I

V



Mapper in the continuous setting

10

X

f

R

I

V

Mapper

Mf (X, I)



Mapper in the continuous setting

10

Input:

- continuous function f : X → R
- cover I of im(f) by open intervals: imf ⊆

⋃
I∈I I

• Compute pullback cover U of X: U = {f−1(I)}I∈I

• Refine U by separating each of its elements into its various con-
nected components in X

• The Mapper is the nerve of V:

- 1 vertex per element V ∈ V

- 1 edge per intersection V ∩ V ′ 6= ∅, V, V ′ ∈ V

- 1 k-simplex per (k + 1)-fold intersection
⋂k
i=0 Vi 6= ∅, V0, · · · , Vk ∈ V

Method:

- topological space X

→ connected cover V



serves as a proxy for the geometry of the underlying space

there are some variants but this one is the most common

Mapper in practice

11

Input:

• Compute pullback cover U of P : U = {f−1(I)}I∈I

• Refine U by separating each of its elements into its various con-
nected components in G

• The Mapper is the nerve of V:

- 1 vertex per element V ∈ V

- 1 edge per intersection V ∩ V ′ 6= ∅, V, V ′ ∈ V

- 1 k-simplex per (k + 1)-fold intersection
⋂k
i=0 Vi 6= ∅, V0, · · · , Vk ∈ V

Method:

- point cloud P ⊆ X with metric dP

• Compute neighborhood graph G = (P,E)

(intersections materialized
by data points)

- continuous function f : P → R
- cover I of im(f) by open intervals: imf ⊆

⋃
I∈I I

→ connected cover V



in practice, the result may be different from the continuous setting due to the neighborhood graphMapper in practice

11

X

f

R

I

V

Mapper

δ

G = δ-neighborhood graph

Mf (G, I)



Mapper in applications

12

Two types of applications:

• clustering

• feature selection

principle: identify statistically relevant sub-
populations through patterns (flares, loops)

flares

loops



breast cancer subtype

Mapper in applications

12

[Nicolau et al. 2011]



recovery from spinal cord injuries

Mapper in applications

12

[Nielson et al. 2015]



protein folding pathways

Mapper in applications

12[Yao et al. 2009]



diagnosis of
pulmonary embolism

Mapper in applications

12

[Rucco et al. 2014]



implicit networks in the US
house of representatives

Mapper in applications

12

[Lum et al. 2013]



classification of NBA players

Mapper in applications

12

[Alagappan 2012]



Choice of parameters

13

→ in practice: trial-and-error

Nielson et al.: Topological Data Analysis for Discovery in Preclinical Spinal Cord
Injury and Traumatic Brain Injury, Nature, 2015



In all these applications, Mapper is used a bit like a magical tool. The main problem is the choice of parameters. Indeed, there are basically 3 parameters to tune: the function, the cover, the neighborhood graphChoice of parameters

13

Parameters:

- function f : P → R

- cover I of im(f) by open intervals

- neighborhood size δ

geometric scale

range scale

lens | filter



In all these applications, Mapper is used a bit like a magical tool. The main problem is the choice of parameters. Indeed, there are basically 3 parameters to tune: the function, the cover, the neighborhood graphChoice of parameters

13

Parameters:

- function f : P → R

- cover I of im(f) by open intervals

- neighborhood size δ

geometric scale

range scale

→ uniform cover I:

- resolution / granularity: r (diameter of intervals)

- gain: g (percentage of overlap)

r

g = 30%

I

R

lens | filter



Here is a simple experiment to gain insights into the choice of parameters.Choice of parameters

13

f̂
=

densit
y esti

mator

f
x =

x-coordinate

Example: P ⊂ R2 sampled from a
known probability distribution



What we see here is that the parameters are not completely independent. First of all, the choice of scale is bound to the choice of function since it depends on the structure of the level sets.Choice of parameters

13
δ = 1% δ = 10% δ = 25%

r = 30, g = 20%

f = f̂

f = fx



Meanwhile, the resolution and gain are related to each other.Choice of parameters

13

g

1/r
10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

15

25

35

45

f = fx, δ = 1%



We see that some features are more delicate than others. For instance, here the loop is a fairly stable feature, while the central cluster appears alternatively as an independent cluster or as a flare

Meanwhile, the resolution and gain are related to each other.Choice of parameters

13

g

1/r
10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

15

25

35

45

f = fx, δ = 1%



In all these applications, Mapper is used a bit like a magical tool. The main problem is the choice of parameters. Indeed, there are basically 3 parameters to tune: the function, the cover, the neighborhood graphChoice of parameters
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Parameters:

- function f : P → R

- cover I of im(f) by open intervals

- neighborhood size δ

geometric scale

range scale

→ uniform cover I:

- resolution / granularity: r (diameter of intervals)

- gain: g (percentage of overlap)

r

g = 30%

I

R

lens | filter



Choice of parameters

13

Recent contributions:

→ clarify the roles of r and g in the continuous setting

→ relate discrete and continuous Mappers under conditions on δ

→ introduce metrics between mappers

→ establish stability and convergence results for Mappers

M. Carrière and S. O. Structure and Stability of the 1-Dimensional Mapper. 2016

E. Munch and B Wang. Convergence between Categorical Representations of Reeb
Space and Mapper. 2016

V. de Silva, E. Munch and A. Patel. Categorified Reeb Graphs. 2015



principle: summarize the topological structure of a map f : X → R through a graph



Reeb Graph

14

x ∼ y ⇐⇒ [ f(x) = f(y) and x, y belong to same cc of f−1({f(x)}) ]

Rf (X) := X/ ∼

R
fX
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Reeb Graph

14

x ∼ y ⇐⇒ [ f(x) = f(y) and x, y belong to same cc of f−1({f(x)}) ]

Rf (X) := X/ ∼

X
f //

π

��

R

Rf (X)

f̃

<<
R

fX f̃

Prop: Rf (X) is a (multi-)graph when
(X, f) is Morse or more generally of
Morse type

→ build a descriptor for this graph



Descriptor for Reeb graph

15

Ext+
0

Ord+
0

Rel−1

Ext−1

Dg f̃ provides a bag-of-features descriptor for Rf (X):

Ord0f̃ ←→ downward branches

Rel1f̃ ←→ upward branches

Ext0f̃ ←→ trunks (cc)

Ext1f̃ ←→ loops

ordinary / relative

extended



Descriptor for Reeb graph

15

Ext+
0

Ord+
0

Rel−1

Ext−1

Dg f̃ provides a bag-of-features descriptor for Rf (X):

Ord0f̃ ←→ downward branches

Rel1f̃ ←→ upward branches

Ext0f̃ ←→ trunks (cc)

Ext1f̃ ←→ loops

ordinary / relative

extended

... and distance to diagonal measures the (in-)stability
of each feature w.r.t. perturbations of (X, f)



Note: begin by explaining the diagram of the Reeb graph, then go back to the one of the initial function and comment on the extra points -¿ extended points correspond to essential classes and therefore give the homology of the torus + symmetry theorem: -¿ the upward branch gives a relative H0 point plus a symmetric ordinary H1 point -¿ the downward branch gives an ordinary H0 point plus a symmetric relative H2 point

loops

16

H0

H1

H2

trunk

downward branch

upward branch

Theorem: Dg f̃ ⊆ Dg f . Indeed:

Dg 0f̃ = Dg 0f

Dg 1f̃ = Dg 1f \ (Ext+
1 f ∪Ord+

1 f)

Dg if̃ = ∅ for i ≥ 2

ordinary / relative

extended

Dg f

Dg f̃



17

QOrd
I

QRel
I

QExt
I

Descriptor for Mapper

Ĩ
I+

I−

Definition: Dg Mf (X, I) := Ordf̃ \QOrd
I ∪Relf̃ \QRel

I ∪ Extf̃ \QExt
I



17

QOrd
I

QRel
I

QExt
I

Descriptor for Mapper

Ĩ
I+

I−

Definition: Dg Mf (X, I) := Ordf̃ \QOrd
I ∪Relf̃ \QRel

I ∪ Extf̃ \QExt
I

Thm: Dg (Mf (X, I)) provides a bag-of-features descriptor for Mf (X, I):

Ord0 ←→ downward branches

Rel1 ←→ upward branches

Ext0 ←→ trunks (cc)

Ext1 ←→ loops
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QOrd
I

QRel
I

QExt
I

Descriptor for Mapper

Let I minimal cover of Imf ⊆ R. For I ∈ I, let I = I− t Ĩ t I+

QOrd
I =

⋃
I∈I

Q+

Ĩ∪I+

QRel
I =

⋃
I∈I

Q−
I−∪Ĩ

QExt
I =

⋃
I,J∈I
I∩J 6=∅

Q−I∪J

Ĩ
I+

I−
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Descriptor for Mapper

Let I ⊆ R interval

Q+
I = {(x, y) ∈ R2 | x ≤ y ∈ I}

Q−I = {(x, y) ∈ R2 | y < x ∈ I}

I

Q+
I

Q−I

R
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thus, before the limit, the bag-of-features signatures of the Mapper and Reeb graph become the same. In fact, we can prove that both combinatorial graphs eventually become quasi-isomorphic.

19

Definition: Dg Mf (X, I) := Ordf̃ \QOrd
I ∪Relf̃ \QRel

I ∪ Extf̃ \QExt
I

Thm: Dg (Mf (X, I)) provides a bag-of-features descriptor for Mf (X, I):

Ord0 ←→ downward branches

Rel1 ←→ upward branches

Ext0 ←→ trunks (cc)

Ext1 ←→ loops

Corollary: Dg Mf (X, I) = Dg f̃ whenever the resolution r of I is smaller
than the smallest distance from Dg f̃ \∆ to the diagonal ∆.

Structure of Mapper
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Stability of Mapper

Definition: Dg Mf (X, I) := Ordf̃ \QOrd
I ∪Relf̃ \QRel

I ∪ Extf̃ \QExt
I

Thm: Dg (Mf (X, I)) provides a bag-of-features descriptor for Mf (X, I):

Ord0 ←→ downward branches

Rel1 ←→ upward branches

Ext0 ←→ trunks (cc)

Ext1 ←→ loops

... and distance to staircase boundary mea-
sures (in-)stability of each feature w.r.t.
perturbations of (X, f, I)
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Dg Mf (X, I) Dg Mf ′ (X, I)←→

Definition: dI(Dg Mf (X, I), Dg Mf (X, I)) := infm costI(m)

m :

costI(m)

Stability of Mapper
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Dg Mf (X, I) Dg Mf ′ (X, I)←→

Definition: dI(Dg Mf (X, I), Dg Mf (X, I)) := infm costI(m)

m :

Thm: For any functions f, f ′ : X → R of Morse type,

dI(Dg Mf (X, I), Dg Mf ′(X, I)) ≤ ‖f − f ′‖∞
costI(m)

Stability of Mapper
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Dg Mf (X, I) Dg Mf ′ (X, I)←→

Definition: dI(Dg Mf (X, I), Dg Mf (X, I)) := infm costI(m)

m :

Thm: For any functions f, f ′ : X → R of Morse type,

dI(Dg Mf (X, I), Dg Mf ′(X, I)) ≤ ‖f − f ′‖∞
costI(m)

Extensions to:

• perturbations of X

• perturbations of I

Stability of Mapper



Summary
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Back to statistics

24

X̂n(X, dX , µ) n points sampled
i.i.d. according to µ.

Questions:

• Statistical properties of the estimator Mf (X̂n, I(gn, rn)) ?

• Convergence to the ground truth Rf (X) in dB? Deviation bounds?

f
+ cover I(gn, rn)



Back to statistics

24

X̂n(X, dX , µ) n points sampled
i.i.d. according to µ.

Theorem [Carrière, Michel, O. 2016]:

If µ is (a, b)-standard and δn = 4
(

2 logn
an

)1/b
, gn ∈

(
1
3
, 1

2

)
, rn = cδn

gn
, then ∀ε > 0:

sup
µ∈P

E
[
dB

(
Dg Mf (X̂n, I(gn, rn)), Dg Rf (X)

)]
≤ C

(
logn

n

)1/b

,

where C depends only on a, b. Moreover, the estimator DgF(X̂n) is minimax optimal (up
to a logn factor) on the space P of (a, b)-standard probability measures on X.

f
+ cover I(gn, rn)
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Back to statistics

24

X̂n(X, dX , µ) n points sampled
i.i.d. according to µ.

Theorem [Carrière, Michel, O. 2016]:

If µ is (a, b)-standard and δn = 4
(

2 logn
an

)1/b
, gn ∈

(
1
3
, 1

2

)
, rn = cδn

gn
, then ∀ε > 0:

sup
µ∈P

E
[
dB

(
Dg Mf (X̂n, I(gn, rn)), Dg Rf (X)

)]
≤ C

(
logn

n

)1/b

,

where C depends only on a, b. Moreover, the estimator DgF(X̂n) is minimax optimal (up
to a logn factor) on the space P of (a, b)-standard probability measures on X.

f
+ cover I(gn, rn)

→ subsampling to tune δn: take (sn)n∈N → +∞ s.t. sn = o
(

n
logn

)
δn = average

{possible subsamples Y of X̂n of size sn}
dH(Y, X̂n)



Wrap-up

TDA pipeline:

data filtration module descriptor (graph/barcode)

+filter

data filtration module descriptor (graph/barcode)

+filter

bottleneck distance

stats via push-forward



Wrap-up

TDA pipeline:

data filtration module descriptor (graph/barcode)

+filter

data filtration module descriptor (graph/barcode)

+filter

bottleneck distance

stats via push-forward

→ filter selection?

→ vector-valued functions?

→ barcode/graph interpretation?
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b0

bh1

bv1

b2

d0

dh1

dv1

d2

T = R ∪ {+∞} ∪ Rop

Ft = f−1((−∞, t]) for t ∈ R

F+∞ = X ' (X, ∅)
Ft̄ = (X, f−1([t,+∞))) for t̄ ∈ Rop

Extended persistence
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dh1
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T = R ∪ {+∞} ∪ Rop

Ft = f−1((−∞, t]) for t ∈ R

F+∞ = X ' (X, ∅)
Ft̄ = (X, f−1([t,+∞))) for t̄ ∈ Rop

ordinary part

extended part

Extended persistence
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dh1
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T = R ∪ {+∞} ∪ Rop
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b0

bh1

bv1

b2

d0

dh1

dv1

d2

d0 = b2

dh1 = bv1

dv1 = bh1

d2 = b0

T = R ∪ {+∞} ∪ Rop

Ft = f−1((−∞, t]) for t ∈ R

F+∞ = X ' (X, ∅)
Ft̄ = (X, f−1([t,+∞))) for t̄ ∈ Rop

ordinary (Ord∗f): born and die in R relative (Rel∗f): born and die in Rop

extended (Ext∗f): born in R and die in Rop

Extended persistence
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Extended persistence

Example (X surface in R3, f height function):

H0

H1

H2

(standard)

∞

ordinary / relative extended

(extended)



Some applications

26

• analysis of random, modular and non-modular scale-free networks and
networks with exponential connectivity distribution,

• analysis of social and spatial networks like neurons, genes, online
messages, air passengers, Twitter, face-to-face contact, etc.,

• coverage and hole detection in wireless sensor fields,

• multiple hypothesis tracking on urban vehicular data,

• analysis of the statistics of high-contrast image patches,

• image segmentation,

• 1d signal denoising,

• 3d shape classification/segmentation/matching,

• clustering of protein conformations,

• measurement of protein compressibility,

• identification of breast cancer subtypes,

• analysis of activity patterns in the primary visual cortex,

• identification of hidden networks in the U.S. house of representatives,

• analysis of 2d cortical thickness data,

• refinement of the classification of NBA players,

• discrimination of electroencephalogram signals recorded before and
during epileptic seizures,

• statistical analysis of orthodontic data,

• measurement of structural changes during lipid vesicle fusion,

• characterization of the frequency and scale of lateral gene transfer in
pathogenic bacteria,

• pattern detection in gene expression data,

• study of plant root systems,

• study of the cosmic web and its filamentary structure,

• analysis of force networks in granular matter,

• analysis of regimes in dynamical systems.
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• analysis of random, modular and non-modular scale-free networks and networks with exponential connectivity distribution,

• analysis of social and spatial networks like neurons, genes, online messages, air passengers, Twitter, face-to-face contact, etc.,

• coverage and hole detection in wireless sensor fields,

• multiple hypothesis tracking on urban vehicular data,

• analysis of the statistics of high-contrast image patches,

• image segmentation,

• 1d signal denoising,

• 3d shape classification/segmentation/matching,

• clustering of protein conformations,

• measurement of protein compressibility,

• identification of breast cancer subtypes,

• analysis of activity patterns in the primary visual cortex,

• identification of hidden networks in the U.S. house of representatives,

• analysis of 2d cortical thickness data,

• time series analysis,

• refinement of the classification of NBA players,

• discrimination of electroencephalogram signals recorded before and during epileptic seizures,

• statistical analysis of orthodontic data,

• measurement of structural changes during lipid vesicle fusion,

• characterization of the frequency and scale of lateral gene transfer in pathogenic bacteria,

• pattern detection in gene expression data,

• study of the cosmic web and its filamentary structure,

• study of plant root systems,

• analysis of force networks in granular matter,

• analysis of regimes in dynamical systems.

- large variety of applications
- 2 reasons for using TDA:
• invariance + stability (good)

• fashionable (bad)


