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Geometric Data

Input: point cloud equipped with a metric or (dis-)similarity measure

data point = image/patch, geometric shape, protein conformation, patient, Linkedln user...
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Geometric Data

Input: point cloud equipped with a metric or (dis-)similarity measure

data point = image/patch, geometric shape, protein conformation, patient, LinkedIn user

| Tables |
B
< I
| Birds | Four-limbs | Dinosaurs | Fishes
Linked ] Maxps Sizhmosesr et e
Ao Goal: describe the structure(s)

ot al | : underlying the data, for interpre-
o4 tation or summary

® Social Business

» Information Management
# Misc Business

» Knowledge Management
» Enirepeneurs

w Business Development

Get your own map al Linked (D] Maps



Challenges
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Challenges

(source: [Carlsson, Ishkhanov, de Silva,
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(source: [Lee, Pederson, Mumford 2003])

Motivation: study cognitive representation
of space of images

Topology
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Challenges

4 million data points in R

(source: [Lee, Pederson, Mumford 2003])

Motivation: study cognitive representation
of space of images
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Topological Data Analysis ( T DA

topological invariants for classification
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Algebraic topology in the 20th century

Algebraic topology in the 21st century

compact set

. . . _ | R

topological descriptors for inference and comparison B e

—» -_:.'-‘= _‘..:_.:- R . ___:.'.'..."..,:
e B2 p  TTERRRES

Bo

. - > point cloud 4



Topological Data Analysis ( T DA

Properties of topological descriptors:

e invariant under coordinate changes

Mﬂ e stable with respect to perturbations

e informative

Algebraic topology in the 21st century

compact set " ,"
opological decrptors or iferchce and comparison (e L]
- _ e 4» g “t .
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The TDA community (as of 2002)

Stanford (G. Carlsson - N qa ﬁ_h‘
) 2 " Duke (H. Edelsbrunner)
R U .‘_“.'?5}3..._-,%_1' |

e 2 research groups (5-10 researchers)



The TDA community (as of 2016)

Edinburgh
IMA, TTI, OSU, U. Conn  \;p; TUK/I 90, ® Jagiellonian U.
o °° o Rut ’ e e ®IST Austria (H. Edelsbrunner)
Stanford (G. Carlsson. etc.) ©® o ULgers (L
‘. ° e ® U. Penn ETH, U..Bologna 2
Pomona Duke (H. Edelsbrunner, etc.) ® Technion Tohoku U.
® CIMAT
AYASDI .
Discover what you don't know. X o
=t o,

®uU. Q.

e 50-100 researchers working on theoretical foundations
e 200-300 researchers at the interface with applications

e very successful applications and company (Ayasdi)



The TDA pipeline at a glance
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point cloud filtration (nested family of spaces)

e visualization (unsupervised)

e summary (supervised)

descriptor (barcode)
6



The TDA pipeline at a glance
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o © °
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L
proximity rule homology
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point cloud filtration (nested family of spaces)

3 pillars to the theory (topological persistence):
e decomposition theorems (3 barcodes)

e algorithms (computation of barcodes)

e stability theorems (barcodes as stable descriptors)

descriptor (barcode)
6



Topological persistence in a nutshell

Ra
X topological space

f: X—-R

persistence

Y
Dg f

signature: persistence diagram

encodes the topological structure of the pair (X, f)




Topological persistence in a nutshell

Inside the black box (X topological space, f: X — R):
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Topological persistence in a nutshell

Inside the black box (X topological space, f: X — R):
o Nested family (filtration) of sublevel-sets I}, = f~!((—o00,a]) for a € R.

e Track evolution of topology throughout the family.
e Finite set of intervals (barcode) encodes births/deaths of topological features.




Topological persistence in a nutshell

Inside the black box (X topological space, f : X — R):
e Nested family (filtration) of sublevel-sets F}, = f~!((—o0,a]) for a € R.

e Track evolution of topology throughout the family.
e Finite set of intervals (barcode) encodes births/deaths of topological features.

(diagram)




opological persistence in a nutshell

xample:
X =R", K C R" compact
f:R*"—=R

xr — mingek || — yl|2




Topological persistence in a nutshell

1 . .
(u, v) — :7§(COS(2WIO,Sln(2ﬁlﬂ,CI&(QW%O,SLH(QWU})

(R mod Z)?

source: http://http://en.wikipedia.org/wiki/Clifford_torus



Topological persistence in a nutshell

(spiral winding around the flat torus)

1 . .
(u, v) — :7§(COS(2WIO,Sln(2ﬁlﬂ,CI&(QW%O,SLH(QWU})

(R mod Z)?

source: http://http://en.wikipedia.org/wiki/Clifford_torus



Topological persistence in a nutshell

(spiral winding around the flat torus)

1 . .
(u, v) — 73 (cos(2mu), sin(27ww), cos(27wv), sin(27wv))

(R mod Z)?

Bettig

Betti,

BEttiz

Bettis




Topological persistence in a nutshell

Inside the black box (X topological space, f: X — R):
o Nested family (filtration) of sublevel-sets I}, = f~!((—o00,a]) for a € R.

e Track evolution of topology throughout the family.
e Finite set of intervals (barcode) encodes births/deaths of topological features.

filtration: Fy C Fy C F3 C Fy C Fy---

topological level
(homology functor) ---eeeeeceememmcemeee e

algebraic level

(persistence) module: H.(F1) — H.(F2) — H.(F3) — H.(F1) — H.(F5) - --



Topological persistence in a nutshell

Theorem. [Gabriel '72, Auslander '74, ---, Webb '85, ---, Crawley-Boevey '12]
Under some technical conditions, a persistence module V decomposes as a direct
sum of interval modules I[b*, d"|:

0 0 0 1 1 0 0] 0
\OH...HOJ%\I{H...HI{JH\OH...HOJ

N N N\

Vgegﬂb* d’]

1€J

\

>

(persistence) module: H.(F1) — H.(F2) — H.(F3) — H.(F4) — H.(F5)---



Topological persistence in a nutshell

(spiral winding around the flat torus)

1 . .
(u, v) — 73 (cos(2mu), sin(27ww), cos(27wv), sin(27wv))

(R mod Z)?

Bettig

Betti,

BEttiz

Bettis




Topological persistence in a nutshell
_ P P =' 1 (2000 data points)
C;@ (u, v) — %(cos(Qwu),sin(27ru),cos(27rfu),sin(27rv))
< i
o |ii P s
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Topological persistence in a nutshell

Theorem: [Cohen-Steiner et al. 2005, Chazal et al. 2009]
For any tame functions f,g : X — R,

dz (Dg f,Dgg) < ||f — glleo

RAS

(bottleneck distance)

(Woeo with a twist)




Statistics on the space of persistence diagrams

Note: the space of persistence diagrams is not a linear space
View persistence diagrams as discrete measures

Consider the p-th Wasserstein distance with a twist

Defining means (Fréchet means):

Given Dq,---, D, persistence diagrams, is the following set empty?

arg min W, (D, D;)?
gD ; p( )
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Note: the space of persistence diagrams is not a linear space
View persistence diagrams as discrete measures

Consider the p-th Wasserstein distance with a twist

Defining means (Fréchet means):

Given Dq,---, D, persistence diagrams, is the following set empty?

arg min W, (D, D;)?
gD ; p( )

Theorem [Turner et al. 2012]: For any finite p > 1, the space of per-
sistence diagrams equipped with W,, is Polish (complete and separable).

Corollary: Fréchet means exist



Statistics on the space of persistence diagrams

Note: the space of persistence diagrams is not a linear space
View persistence diagrams as discrete measures

Consider the p-th Wasserstein distance with a twist

Defining means (Fréchet means):

Given Dq,---, D, persistence diagrams, is the following set empty?

arg min W, (D, D;)?
gD ; p( )

Theorem [Turner et al. 2012]: For any finite p > 1, the space of per-
sistence diagrams equipped with W,, is Polish (complete and separable).

Corollary: Fréchet means exist... but are not unique (+hard to compute)



Statistics via push-forwards

(X,dx) compact metric space

1 probability measure with suppu = X

Sample n points iid
according to L.

Questions:

e Statistical properties of the estimator Dg .F()A(n) ?

e Convergence to the ground truth Dg F(X) 7 Deviation bounds?



Statistics via push-forwards

(X,dx) compact metric space

1 probability measure with suppu = X

Sample n points iid
according to L.

L
:

o
o o 0/
0

Stability thm: dz(Dg F(X,,), Dg F(X)) < 2du(X,, X)

= for any € > 0,

P (dB (Dgf()?n),DgF(X),) > s) <P (dH()?n,X) > —)



Deviation inequality / rate of convergence

— . ° 0.
n points sampled ¢ n .
.i.d. according to p. °, o |

For a,b > 0, u satisfies the (a,b)-standard assumption if for any x € X and any
r > 0, we have u(B(z,r)) > min(ar’, 1).

Theorem [Chazal, Glisse, Labruere, Michel 2014-15]:
If 1 is (a,b)-standard then for any € > 0:

P (dB (Dg]—“()/(\'n),Dg]:(X)) > 5) < j—; exp(—nae’)

Corollary [Chazal, Glisse, Labruére, Michel 2014-15]:

n

sup E [dB (Dgf()?n), Dg]—"(X))] <C <log”>1/b,
pneP

where C depends only on a,b. Moreover, the estimator Dg F(X,,) is minimax optimal (up
to a logn factor) on the space P of (a, b)-standard probability measures on X. 9



Deviation inequality / rate of convergence

— . ° 0.
n points sampled ¢ n .
.i.d. according to p. °, o |

For a,b > 0, u satisfies the (a,b)-standard assumption if for any x € X and any
r > 0, we have u(B(z,r)) > min(ar’, 1).

— subsampling / bootstrap — confidence regions, etc.

A A
Y signal
° o .
o =/ o . °
° °
|
° y noise
// ,//,
e )
bd




M a p pe r [Singh, Mémoli, Carlsson 2007]

<4
& y

same principle as persistence: summarize the topological structure of a map f : X — R



M a p pe r [Singh, Mémoli, Carlsson 2007]

get a higher-level understanding of
the structure of data

exhibit relations between
clusters, variables, etc.

» __. » . Y
& 1 ¥ -
 avoid paying the -
y . . . "
~algorithmic price
%~ of persistence . visualize topology on
« the data directly
e “«—o—9
g .

same principle as persistence: summarize the topological structure of a map f : X — R



Mapper in the continuous setting
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Mapper in the continuous setting

Input:
- topological space X

- continuous function f: X — R

- cover Z of im(f) by open intervals: imf C J; ., 1

Method:
o Compute pullback cover U of X: U = {f~1(I)}1er

e Refine U4 by separating each of its elements into its various con-
nected components in X — connected cover V

e The Mapper is the nerve of V:
- 1 vertex per element V € V
- 1 edge per intersection VNV’ £0, V.,V €V
- 1 k-simplex per (k + 1)-fold intersection ﬂ?:o Vi#£0, Vo, -, VL €V

10



Mapper in practice

Input:
- point cloud P C X with metric dp
- continuous function f: P —- R

- cover Z of im(f) by open intervals: imf C J; ., 1

Method: e Compute neighborhood graph G = (P, F)
o Compute pullback cover U of P: U = {f~1(I)}1ez

e Refine U4 by separating each of its elements into its various con-
nected components in G — connected cover V

e The Mapper is the nerve of V: (intersections materialized

- 1 vertex per element V € V by data pOintS)
- 1 edge per intersection VNV’ £0, V.,V €V
- 1 k-simplex per (k + 1)-fold intersection ﬂ?:o Vi#£0, Vo, -, VL €V

11



Mapper in practice

Mapper
M (G,Z)

G = d-neighborhood graph

11



Mapper in applications

Two types of applications:

e clustering

principle: identify statistically relevant sub-
populations through patterns (flares, loops)

e feature selection

12



relapsed survived death

no relapse

High ESR1

Colored by ESR1 levels

Colored by ESR1 levels

Low ESR1

Low ESR1

GSE2034

Mapper in applications

Colored by chemakine levels

death

survived

breast cancer subtype

relapsed

[Nicolau et al. 2011]

no relapse

12



Mapper in applications

Q

_ Hgh ESR1 Lowest values I | I Highest values
8 - < Contra TBI sparing Ipsi TBI sparing SCI tissue sparing Motor neuron sparing
O b2 '
© = iy
2 Q 5
z
3 High ESR1 E
o
S,
E HighESR} Low ESR1 m _
g i L () K
Lesion size White matter sparing  Tissue deformation
3 : .
w® o ~ N - Methylprednisolone
s .r'1' Fa Al 0,
E g. ; ] E v ‘\.,.\..:{; | I l I50$
R M ’P = ZAvEN
: 0%
Lowest values s . s Highest values s

Numerical heat map

c BBB d Tissue sparing

I31%
recovery from spinal cord injuries

[Nielson et al. 2015]
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Mapper in applications

High ESR1 Lowest \.n’a|l|-="":. i | DN Highest values
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protein folding pathways

[Yao et al. 2009] 12
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Mapper in applications

- High ESR1 Lowest valus~ /7. I Highest values
T 7= oot : . : .
o _ ‘T - woe —\  Sparing SCl tissue sparing Motor neuron sparing

Arudain 8° — BBS ok OD WEE_ Baslis ter — #yuadi i

survived

7
£

O ‘lapsed

Histopathology

Lowest valuesa
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A
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X

diagnosis of
pulmonary embolism

b [Rucco et al. 2014]
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Mapper in applications

implicit networks in the US
house of representatives

[Lum et al. 2013]

death
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ravann d e
! - i — - — wee - (5]
L : - A\ [
> 4 L = T2 —~
Figure 2 - AYASDI-Iris Analysis Aoy \
L X Aeukain, 4* — RiBG_ck 0 W, BawCone it — Wymucilnis '_;.F_'.-?'E'# _/
- }.

sparing Motor neuron sparing

survived
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“
\"1.\
.
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Mapper in applications
classification of NBA players

[Alagappan 2012]

High ESR1 d Lowe

death
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-‘ Y —

Figure 2 - AYASDI-Iris Analysi

. E

survived

slapsed

2 @

Histopathology

Lowest valuesa

©

Motor neuron sparing

12



Choice of parameters

— In practice: trial-and-error

high-dimensional data sets*»**. This is performed automatically within the
software, by deploying an ensemble machine learning algorithm that iterates

through overlapping subject bins of different sizes that resample the metric space

(with replacement), thereby using a combination of the metric location and

similarity of subjects in the network topology. |After performing millions of

iterations, the algorithm returns the most stable, consensus vote for the resultin

‘golden network’ (Reeb graph), representing the multidimensional data shapelz’

Nielson et al.: Topological Data Analysis for Discovery in Preclinical Spinal Cord
Injury and Traumatic Brain Injury, Nature, 2015

13




Choice of parameters

Parameters:
lens | filter

- function f: P - R -
- cover Z of im(f) by open intervals

- neighborhood size ¢ \

T range scale

geometric scale

13



Choice of parameters

Parameters:

lens | filter
-functionf:P%]R{¢ ’

- cover Z of im(f) by open intervals

- neighborhood size ¢ \

T range scale

geometric scale

— uniform cover Z:

- resolution / granularity: r (diameter of intervals)

- gain: g (percentage of overlap)

13



Choice of parameters

Example: P C R? sampled from a
known probability distribution

D40 ° o %% o o
N TRNLXE

] b

R P &
SPESTRNGES
i fl,r, Afs Kend

SRR
BT

Y. .:?;",.. )
3;‘{'3'“*" o g E
iR N Fe R
ML R ‘.*..,c :-';',' i3

o ° ¢

e e
L ..

XA

13



Choice of parameters

>
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13



f:fx15:1%

Choice of parameters




f:fx15:1%

Choice of parameters




Choice of parameters

Parameters:

lens | filter
-functionf:P%]R{¢ ’

- cover Z of im(f) by open intervals

- neighborhood size ¢ \

T range scale

geometric scale

— uniform cover Z:

- resolution / granularity: r (diameter of intervals)

- gain: g (percentage of overlap)

13



Choice of parameters

Recent contributions:

— clarify the roles of 7 and ¢ in the continuous setting
— Introduce metrics between mappers
— establish stability and convergence results for Mappers

— relate discrete and continuous Mappers under conditions on 0

M. Carriere and S. O. Structure and Stability of the 1-Dimensional Mapper. 2016

E. Munch and B Wang. Convergence between Categorical Representations of Reeb
Space and Mapper. 2016

V. de Silva, E. Munch and A. Patel. Categorified Reeb Graphs. 2015

13



principle: summarize the topological structure of a map f : X — R through a graph



Reeb Graph

f(y) and z,y belong to same cc of f~'({f(x)}) ]

14
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Reeb Graph

f(y) and z,y belong to same cc of f~'({f(x)}) ]

14
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Reeb Graph

f(y) and z,y belong to same cc of f~'({f(x)}) ]

Prop: R (X) is a (multi-)graph when
(X, f) is Morse or more generally of
Morse type

— build a descriptor for this graph

14



Descriptor for Reeb graph

Dgf provides a bag-of-features descriptor for R ¢(X):

Ordg f <— downward branches Extof <— trunks (cc)

Rellf <— upward branches Extlf +— loops

e ordinary / relative

m extended

15



Descriptor for Reeb graph

Dgf provides a bag-of-features descriptor for R ¢(X):

Ordg f <— downward branches Extof <— trunks (cc)

Rellf <— upward branches Extlf +— loops

.. and distance to diagonal measures the (in-)stability e ordinary / relative

of each feature w.r.t. perturbations of (X, f) m extended

15



e ordinary / relative

m extended

Theorem: Dg f C Dg f. Indeed:
Dgof =Dgof

o Dg1f =Dg1f\ (Ext] fUOrd] f)
Dg,;f =0 for i > 2

16



Descriptor for Mapper

Definition: DgM;(X,7) := Ordf \ Q2" URelf \ QB UExtf \ QF*

17



Descriptor for Mapper

Definition: DgM;(X,7) := Ordf \ Q2" URelf \ QB UExtf \ QF*

Thm: Dg (M¢(X,Z)) provides a bag-of-features descriptor for M (X, Z):

Ordy <— downward branches Extg <— trunks (cc)

Rely «— upward branches Ext; <— loops

17



Descriptor for Mapper

Let Z minimal cover of Inf CR. For [ € Z, let I=1- LUTUIT

OI‘d U Q
TUI+ Ext —
IeZ QI — U QIUJ
I,JET
17 = U Q-7 InJ#0
Iel

-~

Rel
7z

17



Let / C R interval

Q7 ={(z,y) €R
Qr ={(z,y) €R

Descriptor for Mapper

r<yel}
y<xe€l}

17






Structure of Mapper

Definition: DgM;(X,7) := Ordf \ Q2" URelf \ QB UExtf \ QF*

Thm: Dg (M¢(X,Z)) provides a bag-of-features descriptor for M (X, Z):

Ordg «— downward branches

Rely «— upward branches

Extg <— trunks (cc)

Ext, «— loops

Corollary: DgM(X,Z) = Dg f whenever the resolution r of Z is smaller

than the smallest distance from Dg f \ A to the diagonal A.

19



Stability of Mapper

Definition: DgM;(X,7) := Ordf \ Q2" URelf \ QB UExtf \ QF*

Thm: Dg (M¢(X,Z)) provides a bag-of-features descriptor for M (X, Z):

Ordg «— downward branches

Rely «— upward branches

Extg <— trunks (cc)

Ext, «— loops

.. and distance to staircase boundary mea-

sures (in-)stability of each feature w.r.t.
perturbations of (X, f,7)

20









Stability of Mapper

Definition: dI(Dg Mf (X, I), Dg Mf(X, I)) .= inf,, COStI(m)

costz(m)

\

)

m: DgM(X,Z) «— DgM (X, T)

22



Stability of Mapper

Definition: dI(Dg Mf (X, I), Dg Mf(X, I)) .= inf,, COStI(m)

Thm: For any functions f, f' : X — R of Morse type,

dz(DgMs(X,Z), DgM (X, Z)) < ||f — f'loo

costz(m)

\

)

m: DgM(X,Z) «— DgM (X, T)

22



Stability of Mapper

Definition: dI(Dg Mf (X, I), Dg Mf(X, I)) .= inf,, COStI(m)

Thm: For any functions f, f' : X — R of Morse type,

dz(DgMs(X,Z), DgM (X, Z)) < ||f — f'loo

costz(m)

Extensions to:

e perturbations of X

e perturbations of Z

\

)

m: DgM(X,Z) «— DgM (X, T)
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Summary




Back to statistics 3

. °° L. b4
° @
— o * . e
. ° ~ : ’* @
n points sampled |, Xn :
. . . P \
I.i.d. according to 1. | « % %  o°
o ° ® @@
{ Y |
—I_ Cover I(gn7 lrn) o i o
<+ ®

R

Questions:

AN

e Statistical properties of the estimator M ¢(X,,Z(gn,7n)) ?

e Convergence to the ground truth R¢(X) in dg? Deviation bounds?
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Back to statistics

A A,
./ﬂ .0. * °
. . < c—n 7
n points sampled . Xn °
i.i.d. according to (. | « % o®y
: + cover Z(gn,Tn) ¢ o,

Theorem [Carriere, Michel, O. 2016]:

SR R OO

If 11 is (a,b)-standard and &, = 4 (21982)/% g ¢ (1 1) 4 — u then Ve > 0;

an gn

~ logn 1/b
supE[dB (Dng(Xn,I(gn,rn)), Dng(X))} < C ( g ) |
pneP n

where C' depends only on a,b. Moreover, the estimator Dg ]-"()?n) is minimax optimal (up

to a logn factor) on the space P of (a, b)-standard probability measures on X.
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Back to statistics

A A,
./ﬂ .0. * °
. . < c—n 7
n points sampled . Xn °
i.i.d. according to (. | « % o®y
: + cover Z(gn,Tn) ¢ o,

Theorem [Carriere, Michel, O. 2016]:

SR R OO

If o is (a,b)-standard and 6, = 4 (210g")1@, gn € (%, 2), rn = 2, then Ve > 0:

[afn

dn

~ logn 1/b
supE[dB (Dng(Xn,I(gn,rn)), Dng(X))} < C ( g ) |
pneP n

where C' depends only on a,b. Moreover, the estimator Dg ]-"()?n) is minimax optimal (up

to a logn factor) on the space P of (a, b)-standard probability measures on X.
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Back to statistics

g@
®
A A o
° For
r— ‘ ( * [ @/@ QO
. o R * ——b ,,@ @
n points sampled |, Xn *
. . . ° ° i
I.i.d. according to (. | « o %  o°
) ° Y @@
LI |
_I_ Cover I(gn7 /rn) o o L
< 2
/

Theorem [Carriere, Michel, O. 2016]:

If o is (a,b)-standard and 6, = 4 (21@05“)1@, gn € (3 3), Tn = 2=, then Ve > 0:

~ logn 1/b
supE[dB (Dng(Xn,I(gn,rn)), Dng(X))} < C ( g ) |
pneP n

where C depends only on a,b. Moreover, the estimator Dg ]-"()/(\'n) is minimax optimal (up
to a logn factor) on the space P of (a, b)-standard probability measures on X.

— subsampling to tune d,,: take (s, )neny — 400 s.t. S, =0 (107;”)

On = aJvelrgbge{possible subsamples Y of X,, of size sn}dH(Y’ Xn) 54



Wrap-up

TDA pipeline:

data [/ | filtration |
1filter

data = | filtration|

+filter

module

— (descriptor (graph/barcode)
A

bottleneck distance
stats via push-forward

\J

module

—— descriptor (graph/barcode)




Wrap-up

TDA pipeline:
data [/ | filtration |
1filter
data = | filtration|
+filter

— filter selection?

module

— (descriptor (graph/barcode)
A

bottleneck distance
stats via push-forward

\J

module

—— descriptor (graph/barcode)

— barcode/graph interpretation?

— vector-valued functions?
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Extended persistence

T =RU {400} UR°P ordinary part

F; = f—l((—oo,t]) fortc R <'J extended part
Fr= (X, f~1([t,+0))) for t € ROP # ___________________ ‘bz
Fioo=X>2 (X0 £ A N by




Extended persistence
T =R U {400} UROP

Fr = f~1((—o00,t]) fort € R
Fr= (X, f71([t,+0))) fort e R°P by
F—I—oo:X2<X,@) ———————————————————————— bY




Extended persistence
T =R U {400} UROP

Ft = f~'((~o0,t]) fort €R
Fr = (X, f~1([t,+00))) for t € ROP
F"‘OO = X (Xa (Z)) """""

extended (Ext. f): born in R and die in R°P
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Extended persistence

Example (X surface in R>, f height function):

o) - — @ —

f (standard)

(extended)

e ordinary / relative

m extended
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Some applications

e analysis of random, modular and non-modular scale-free networks and
networks with exponential connectivity distribution,

e analysis of social and spatial networks like neurons, genes, online
messages, air passengers, [witter, face-to-face contact, etc.,

e coverage and hole detection in wireless sensor fields,

e multiple hypothesis tracking on urban vehicular data,

e analysis of the statistics of high-contrast image patches,
® Image segmentation,

e 1d signal denoising,

e 3d shape classification/segmentation /matching,

e clustering of protein conformations,

e measurement of protein compressibility,
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Some applications

analysis of random, modular and non-modular scale-free networks and networks
with exponential connectivity distribution,

analysis of social and spatial networks like neurons, genes, online messages, air
passengers, Twitter, face-to-face contact, etc.,

coverage and hole detection in wireless sensor fields,
multiple hypothesis tracking on urban vehicular data,
analysis of the statistics of high-contrast image patches,
Image segmentation,

1d signal denoising,

3d shape classification /segmentation /matching,
clustering of protein conformations,

measurement of protein compressibility,

identification of breast cancer subtypes,

analysis of activity patterns in the primary visual cortex,
identification of hidden networks in the U.S. house of representatives,
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Some applications

® analysis of random, modular and non-modular scale-free networks and networks with exponential connectivity distribution,
® analysis of social and spatial networks like neurons, genes, online messages, air passengers, Twitter, face-to-face contact, etc.,
® coverage and hole detection in wireless sensor fields,

e multiple hypothesis tracking on urban vehicular data,

® analysis of the statistics of high-contrast image patches,

® image segmentation,

e 1d signal denoising,

e 3d shape classification/segmentation/matching,

e clustering of protein conformations,

® measurement of protein compressibility,

e identification of breast cancer subtypes,

e® analysis of activity patterns in the primary visual cortex,

e identification of hidden networks in the U.S. house of representatives,

e® analysis of 2d cortical thickness data,

® time series analysis,

o refinement of the classification of NBA players,

e® discrimination of electroencephalogram signals recorded before and during epileptic seizures,
e statistical analysis of orthodontic data,

® measurement of structural changes during lipid vesicle fusion,

® characterization of the frequency and scale of lateral gene transfer in pathogenic bacteria,

® pattern detection in gene expression data,

e® study of the cosmic web and its filamentary structure,
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Some applications

analysis of random, modular and non-modular scale-free networks and networks with exponential connectivity distribution,
analysis of social and spatial networks like neurons, genes, online messages, air passengers, Twitter, face-to-face contact, etc.,
coverage and hole detection in wireless sensor fields,

multiple hypothesis tracking on urban vehicular data,

analysis of the statistics of high-contrast image patches,

image segmentation,
1d signal denoising,

3d shape classification/segmenta

- large variety of applications

clustering of protein conformatio

measurement of protein compresgiBHin 2 reasons for using TDA
identification of breast cancer sul inva ria nce —|— sta blllty (gOOd)

analysis of activity patterns in th faShiOna ble (bad)

identification of hidden networks

analysis of 2d cortical thickness data,

time series analysis,

refinement of the classification of NBA players,

discrimination of electroencephalogram signals recorded before and during epileptic seizures,
statistical analysis of orthodontic data,

measurement of structural changes during lipid vesicle fusion,

characterization of the frequency and scale of lateral gene transfer in pathogenic bacteria,
pattern detection in gene expression data,

study of the cosmic web and its filamentary structure,
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