IPDSAW	Geo	Open Prob	Non Di
Intera	cting partially walk (poly	v directed self-ave mer collapse)	oiding
	N.	Pétrélis	
	Laboratoire Jean Le	eray, Université de Nantes	
	Ao	ût 2016	

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ◆○◆

1 A directed model : the IPDSAW	
2 Geometric description of the path in each regime	
3 Open problems	
4 A non-directed model : the IPRSAW	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

1 A directed model : the IPDSAW

うして ふゆう ふほう ふほう ふしつ

Introduced by Zwanzig and Lauritzen (1968)

1.1) Trajectories.

For a polymer of length $L \in \mathbb{N}$ the set of allowed configurations is

 $\Omega_L = \{L - \text{step directed self-avoiding paths starting at the}$ origin and taking steps in $\{\uparrow, \rightarrow, \downarrow\}\}.$

IPDSAW	Geo	Open Prob	Non Dir

1.2) Self-interactions.

An energetic reward $\beta \in (0, \infty)$ is associated with each self touching made by the polymer

Self-touching : two non consecutive sites along the path at distance 1 from each other.

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

1.3) Hamiltonian.

With each $\pi \in \Omega_L$ we associate an energy given by the Hamiltonian

$$H_{L,\beta}(\pi) := \beta \sum_{\substack{i,j=0\\i< j-1}}^{L} \mathbf{1}_{\{\|\pi_i - \pi_j\| = 1\}}$$

 $\beta \in (0,\infty)$: intensité de l'attraction (self-touching).

1.4) Polymer measure.

For every $\pi \in \Omega_L$;

$$P_{L,\beta}(\pi) = \frac{e^{H_{L,\beta}(\pi)}}{Z_{L,\beta}}$$

with the partition function

$$Z_{L,\beta} = \sum_{\pi \in \Omega_L} e^{H_{L,\beta}(\pi)}$$

Free energy : for $\beta \in (0, \infty)$, set $f(\beta) := \lim_{L \to \infty} \frac{1}{L} \log Z_{L,\beta}$. For all $\beta \in (0, \infty)$, $f(\beta) \ge \beta$ because (for $L \in \mathbb{N}^2$)

Open Prob

$$H_{L,\beta}(\tilde{\pi}) = \beta(\sqrt{L} - 1)^2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

		- 1		
	$\beta_c := \inf \{ \beta$	$\geq 0: f(eta)$	$=\beta\}$	
Partition [0	$(0,\infty)$ into a collapse	ed (\mathcal{C}) and	an extended (\mathcal{E}) phase	
$\mathcal{C}:=\{eta:$	$f(eta)=eta\}=\{eta:eta$	$\geq \beta_c \}$		

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Non Dir

and

IPDSAW

 $\mathcal{E} := \{\beta : f(\beta) > \beta\} = \{\beta : \beta < \beta_c\}.$

Geo

うして ふゆう ふほう ふほう ふしつ

1.6) What do we want to show?

Assymptotics of the free energy close to β_c : spot β_c and find γ > 0 and α > 0 s.t.

$$\tilde{f}(\beta_c - \epsilon) - \tilde{f}(\beta_c) = \gamma \epsilon^{\alpha}$$

- Path results : in each regimes (i.e., extended, critical and collapsed), describe the geometric conformation adopted by the path π under $P_{L,\beta}$, when L is large but finite. Give the infinite volume limit.
- Simulate long polymers : sample path π under $P_{L,\beta}$ with large L.

IPDSAW	Geo	Open Prob	Non Dir

2 Geometric description of the path in each regime

2.1) Three features of interest

• The horizontal expansion N_{π} of $\pi \in \Omega_L$

▶ ▲ 臣 ▶ 臣 • • ○ � (♡

IPDSAW	Geo	Open Prob	Non Dir
• The o	decomposition into be	eads	
Ŋ			

IPDS	SAW C	Geo	Open Prob	Non Dir
	3.2) Horizontal e N_{π} : number of hor	xpansion izontal step of π	(sampled from $P_{L,\beta}$).	
	Theorem (PC GN N	NP (2013-2016))		
	(1) Extended : there	e exists $e_{\beta} \in (0, 1]$) so that	
	$\lim_{L \to \infty}$	$\sum_{\infty} P_{L,\beta} \Big(\Big \frac{N_{\pi}}{L} - e_{\beta} \Big $	$\left \epsilon\right \geq \epsilon = 0.$	
	(2) Critical : $\lim_{L \to \infty} \frac{N_7}{L^{2/3}}$	$\frac{\tau}{3} =_{law} \inf\{s \ge 0$: $\int_0^s B_s ds = 1$.	
	(3) Collapsed : ther	e exists $a_{\beta} \in (0, \infty)$	∞) so that	
	$\lim_{L \to \infty}$	$\lim_{\infty} P_{L,\beta} \Big(\Big \frac{N_{\pi}}{\sqrt{L}} - a_{\beta} \Big $	$_{\beta}\Big \geq\epsilon\Big)=0.$	
			(日) (四) (注) (注) (注)	5 DAG

3.3) Vertical expansion

For $\pi \in \Omega_L$ let $\mathcal{E}_{\pi}^+ = (\mathcal{E}_{\pi,i}^+)_{i=0}^{N_{\pi}}$ and $\mathcal{E}_{\pi}^- = (\mathcal{E}_{\pi,i}^-)_{i=0}^{N_{\pi}}$ be the upper and lower envelops of the path π .

Let $\widetilde{\mathcal{E}}_{\pi}^+$ and $\widetilde{\mathcal{E}}_{\pi}^-: [0,1] \to \mathbb{R}$ be the time rescaled cadlag process defined as

$$\tilde{\mathcal{E}}^a_{\pi}(t) = \mathcal{E}^a_{\pi, \lfloor t (N_{\pi}+1) \rfloor}, \quad a \in \{\pm\}, \ t \in [0, 1].$$

≡▶ ≡ のへで

ション ふゆ マ キャット マックシン

3.3.1) Inside the extended phase $(\beta < \beta_c)$ When $\beta < \beta_c$ and under $P_{L,\beta}$, We let also $(B_s)_{s \in [0,1]}$ be a

standard Brownian motion.

Geo

Theorem (PC NP (2016))

For $\beta < \beta_c$, and with π sampled from $P_{L,\beta}$, there exists a $\sigma_{\beta} > 0$ such that

$$\lim_{L \to \infty} \frac{1}{\sqrt{N_{\pi}}} \left(\tilde{\mathcal{E}}_{\pi}^+, \tilde{\mathcal{E}}_{\pi}^- \right) =_{Law} \sigma_{\beta} \left(B_s, B_s \right)_{s \in [0,1]},$$

and σ_{β} is explicit.

3.3.2) Inside the collapsed phase $(\beta > \beta_c)$

Divide the path into beads :

Let $I_{\max}(\pi)$ be the number of steps made by the path $\pi \in \mathcal{W}_L$ inside its largest bead.

Theorem (One bead Theorem, PC GN NP (2015))

For $\beta > \beta_c$ there exists c > 0 such that

 $\lim_{L \to \infty} P_{L,\beta} \left(I_{max}(\pi) \ge L - c \left(\log L \right)^4 \right) = 1.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

Geo

Theorem (Convergence to Wulff shapes, PC NP GB (2015)) For $\beta > \beta_c$ and $\epsilon > 0$,

$$\lim_{L \to \infty} P_{L,\beta} \left(\left\| \frac{\widetilde{\mathcal{E}}_{\pi}^{+}}{N_{\pi}} - \frac{\gamma_{\beta}^{*}}{2} \right\|_{\infty} > \epsilon \right) = 0,$$
$$\lim_{L \to \infty} P_{L,\beta} \left(\left\| \frac{\widetilde{\mathcal{E}}_{\pi}^{-}}{N_{\pi}} + \frac{\gamma_{\beta}^{*}}{2} \right\|_{\infty} > \epsilon \right) = 0.$$

where γ_{β}^{*} is the Wulff shape given by

$$\gamma_{\beta}^{*}(s) = \int_{0}^{s} L' \Big[(\frac{1}{2} - x) \tilde{h}_{\beta} \Big] dx, \quad s \in [0, 1]$$

and

•
$$L(x) = \log \mathbf{E}_{\beta}[\exp(xV_1)]$$
 for $x \in (-\frac{\beta}{2}, \frac{\beta}{2})$

• \tilde{h}_{β} is the unique sol. of $h \int_0^1 L'(h(x-\frac{1}{2}))dx = \frac{1}{a_{\beta}^2}$. <ロト < 母 > < 三 > < 三 > < 三 > のへで Thus, for $\pi \in \mathcal{W}_L$ sampled from $P_{L,\beta}$, we observe

■▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● の Q (2)

Geo

Theorem (Fluctuation around Wulff Shape, PC NP (2016)) For $\beta > \beta_c$ and π sampled from $\widetilde{P}_{L,\beta}$,

$$\lim_{L \to \infty} \sqrt{N_{\pi}} \left(\frac{\tilde{\mathcal{E}}_{\pi}^+}{N_{\pi}} - \frac{\gamma_{\beta}^*}{2}, \frac{\tilde{\mathcal{E}}_{\pi}^-}{N_{\pi}} + \frac{\gamma_{\beta}^*}{2} \right) =_{Law} \left(\xi_{\beta} - \xi_{\beta}^c, \, \xi_{\beta} + \xi_{\beta}^c \right),$$

with

- W a standard BM,
- ξ_{β} defined as

$$\xi_{\beta}(t) := \int_{0}^{t} \sqrt{L''((\frac{1}{2} - x)\tilde{h}_{\beta})} \, dW_{x}, \quad t \in [0, 1]$$

• ξ_{β}^{c} independent of ξ_{β} with the same law but conditioned on $\xi_{\beta}^{c}(1) = \int_{0}^{1} \xi_{\beta}^{c}(s) ds = 0$

The last result is not obtained under $P_{L,\beta}$ but under $\widetilde{P}_{L,\beta}$ that is

$$\widetilde{P}_{L,\beta}(\pi) = \sum_{L' \in K_L} \frac{\widetilde{Z}_{L',\beta}}{\sum_{k \in K_L} \widetilde{Z}_{k,\beta}} P_{L',\beta}(\pi) \ \mathbf{1}_{\{\pi \in \Omega_{L'}\}}, \quad \text{for } \pi \in \widetilde{\Omega}_L.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

with

•
$$K_L = \{-(\log L)^5, \dots, (\log L)^5\}$$

• $\Omega'_L = \bigcup_{L' \in K_L} \Omega'_L$

Geo

3.3.3) At criticality $(\beta = \beta_c)$

Let $\widehat{\mathcal{E}}^+_{L,\pi}$ and $\widehat{\mathcal{E}}^-_{L,\pi}: [0,\infty) \to \mathbb{R}$ be the time-space rescaled cadlag process defined as

$$\hat{\mathcal{E}}^a_{L,\pi}(s) = \frac{1}{L^{1/3}} \, \mathcal{E}^a_{\pi,\lfloor s L^{2/3} \rfloor \wedge N_\pi}, \quad a \in \{\pm\}, \ s \in [0,\infty).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ● ●

IPDSAW	Geo	Open Prob	Non Dir

Theorem (Convergence at criticality, PC NP (2016)) For $\beta = \beta_c$ and π sampled from $P_{L,\beta}$,

$$\begin{split} \lim_{L \to \infty} \left(\hat{\mathcal{E}}_{L,\pi}^+, \hat{\mathcal{E}}_{L,\pi}^- \right) \\ = _{Law} \sigma_\beta \left[D_{s \wedge g(1)} + \frac{1}{2} \left(|B_{s \wedge g(1)}|, -|B_{s \wedge g(1)}| \right) \right]_{s \ge 0} \end{split}$$

うして ふゆう ふほう ふほう ふしつ

with

- D and B two independent standard BM,
- g(1) satisfies $\int_0^{g(1)} |B_s| ds = 1$

• B is conditioned by
$$B_{g(1)} = 0$$
.

TD	T	C	A 1	X 7
112	ע	ъ.	A	vv

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

	 	~	~		 		

Open Prob

Non Dir

うして ふゆう ふほう ふほう ふしつ

Three directions for further investigations

IPDSAW

- **Disordered IPDSAW** : introduce a random component in the intensity of the interactions (β becomes $\beta + s\xi_{i,j}$).
- Higher dimension : Investigate a partially directed version of the model in dimension $d \ge 3$.
- A non directed model : in dimension 2, investigate a new model built with the prudent walk.

TTO			T T
чч	 5	Δ	\mathbf{M}
		× *	••

4 A non-directed model : the IPRSAW

< ロ > < 雪 > < 雪 > < 雪 > < 雪 > < 雪 > < 雪 > < 雪 > < 雪 > < 雪 > < つ へ ()

4.1) Definition of the model

The prudent walk can not take a step in the direction of a site that has already been visited :

- Detheridge and Guttman (2008), Bousquet-Melou (2009), Beaton and Iliev (2015) (Combinatorics)
- Beffara, Friedli and Velenik (2009) (Scaling limit)

DSAW	Geo	Open Prob	Non Dir
IPRSAW :	the model is define	ed exactly like the IPDSA	W except
that the set	of trajectories is	enlarged to contain all L -s	steps
prudent wa	ks in 2 dimension	, i.e.,	

 $\Omega_L = \{L \text{-steps self-avoiding paths satisfying the prudent condition}\}$

ション ふゆ マ キャット マックシン

The free energy of IPRSAW is defined as

$$f^{\mathrm{pr}}(\beta) = \lim_{L \to \infty} \frac{1}{L} \log Z_{L,\beta}^{\mathrm{pr}}$$

Theorem (Collapse transition of IPRSAW, NP NT (2016)) There exists $\beta_c^{pr} \in [\beta_c, \infty)$ such that • $f^{pr}(\beta) > \beta$ for $\beta \ge \beta_c^{pr}$ • $f^{pr}(\beta) = \beta$ for $\beta < \beta_c^{pr}$

4.2) A 2-sided version of IPRSAW

A subclass of the prudent path of length L is the 2-sided L step prudent path, i.e.,

We can therefore define the 2-sided PRSAW, with a free energy

$$f^{\text{pr,2-sided}}(\beta) = \lim_{L \to \infty} \frac{1}{L} \log Z_{L,\beta}^{\text{pr,2-sided}}$$

Theorem (2-sided IPRSAW NP NT (2016)) For every $\beta \ge 0$ $f^{pr}(\beta) = f^{pr,2-sided}(\beta)$

At $\beta = 0$, this answers a conjectures raised in **Detheridge and Guttman** (2008) or **Bousquet-Melou** (2009), i.e., the exponential growth rate of 2-sided prudent path equals that of general prudent path in dimension 2.

うして ふゆう ふほう ふほう ふしつ