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Model
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» polymer chain: S = (S,)n>0 SRW on Z? (P)
» charges: w = (wn)n>0 iid, £1 with prob. 1/2 (P),
> tilting parameter 6 > 0
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Annealed polymer measure

» On-site interaction:

Hn = Z w,-wjl{S,- = 5_,}

1<ij<n



Annealed polymer measure

» On-site interaction:

Hn = Z w,-wjl{S,- = SJ}

1<ij<n
> Annealed polymer measure:

apP3?° (0.5) = exp(—BHn)
d(P x Ps) w2 = o ogBe

where (3 is the inverse temperature, and Zf’é is the
annealed partition function.
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Annealed free energy

1
For(8,6) 2 lim = log Z2?
n—oo N

» d =1 : the limit exists and has a spectral representation;

» d > 2 : open, but we can replace lim by limsup...



Annealed phase transition

F=0

collapsed, S, = n1/(d+2)

Be(9)

F>0

extended




Annealed phase transition

F=0
sub-ballistic, S, =< n/3 F>0

ballistic
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» In d =1, the local times {{,(x)}xcz are related to a
Galton-Watson process (Ray-Knight theorem);
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Spectral representation

» Key formula:

Zy’ =E | I] @stta(®) |, €alx) =) 1{S=x}
i=1

x€zZ4

» In d =1, the local times {{,(x)}xcz are related to a
Galton-Watson process (Ray-Knight theorem);

> Get

> e zl® = (Id — Aups)H(0,0)
n>0

Spectral representation

Fa"(3,0) = inf{pn > 0: spr(A,55) < 1}
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Weak-coupling limits

As § (0,
1 C1(58/3 d=1
Be(0) = 5(52 —[14+0(1)]{ c20%logd| d =2 (conj)
cqd* d > 3 (conj)

> Related to the self intersection local time of the SRW,
» The constant c; is universal and the principal eigenvalue of a

Sturm-Liouville operator
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» Existence, self-averaging of the free energy?

» Phase transition?



Quenched model

Quenched polymer measure:

dPv
n,3 exp(—BHx)
ap )= Z2s

9

where Zwﬁ is the quenched partition function.
Many open questions:
» Existence, self-averaging of the free energy?

» Phase transition?

Some answers:

» If the average charge is non-zero, the number of visited sites
is linear in n;

» Ballistic behaviour in d = 1 for large average charges and low
temperature.
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