Autour des modèles d'Atlas

Julien Reygner

CERMICS – École des Ponts ParisTech

Thèse préparée au LPMA (Université Pierre et Marie Curie) et au CERMICS (École des Ponts ParisTech), dirigée par Benjamin Jourdain et Lorenzo Zambotti.

Atlas au supermarché

Un modèle très simple au supermarché:

- ▶ *n* caisses, taille des files d'attente : $S_1(t), \ldots, S_n(t) > 0$;
- un client se présente : avec grande probabilité, il choisit la plus petite file d'attente.

Dynamique schématique :
$$\frac{\mathrm{d}S_i}{\mathrm{d}t} = \text{croissance} \cdot \mathbf{1}_{\{S_i = \min_j S_j\}} + \text{fluctuations}.$$

Modèle d'Atlas

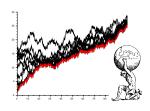
Modèle d'Atlas sur un marché d'actions :

 $X_i(t) = \ln S_i(t)$ est le logarithme de la capitalisation (prix × nombre d'actions),

$$dX_i(t) = g\mathbb{1}_{\{X_i(t) = \min_j X_j(t)\}} dt + dW_i(t),$$

avec taux de croissance q > 0.

Le plus petit actif « porte la croissance du marché sur ses épaules ».



Références :

- ► Fernholz Stochastic Portfolio Theory '02
- Banner, Fernholz, Karatzas AAP '05
- Fernholz, Karatzas Stochastic Portfolio Theory: an Overview '08

Généralisation : systèmes interagissant par le rang

On regarde X_1, \ldots, X_n comme un système de particules sur \mathbb{R} .

On note $X_{(1)}(t) \leq \cdots \leq X_{(n)}(t)$ la statistique d'ordre.

- Atlas: la dynamique d'une particule ne dépend que de si elle est en première position.
- Généralisation : la dynamique d'une particule ne dépend que de son rang.

On obtient, en choisissant $\gamma_1, \ldots, \gamma_n \in \mathbb{R}, \sigma_1, \ldots, \sigma_n > 0$:

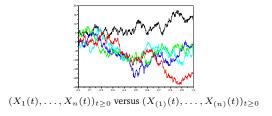
$$\mathrm{d}X_i(t) = \sum_{k=1}^n \gamma_k \mathbb{1}_{\{X_i(t) = X_{(k)}(t)\}} \mathrm{d}t + \sum_{k=1}^n \sigma_k \mathbb{1}_{\{X_i(t) = X_{(k)}(t)\}} \mathrm{d}W_i(t),$$

appelé système de diffusions interagissant à travers leur rang.

Quelques questions pertinentes :

- bonne définition et collisions multiples (solution faible : Bass, Pardoux PTRF '87, solution forte : Ichiba, Karatzas AAP '10, Ichiba, Karatzas, Shkolnikov PTRF '13);
- comportement en temps long;
- ▶ comportement $n \to +\infty$ et $n = +\infty$ (Harris JAP '65, Dembo, Tsai arXiv '15, Sarantsev AIHP '16+).

Dynamique de la statistique d'ordre



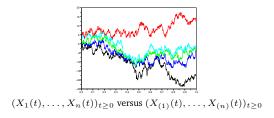
Remarque : la statistique d'ordre $X_{(1)}(t) \leq \cdots \leq X_{(n)}(t)$ vérifie

$$dX_{(k)}(t) = \gamma_k dt + \sigma_k d\beta_k(t) + \frac{1}{2} dL_{k-1,k}(t) - \frac{1}{2} dL_{k,k+1}(t),$$

où $L_{k,k+1}$ est le **temps local en** 0 de la semimartingale $X_{(k+1)} - X_{(k)}$.

- Mouvement brownien normalement réfléchi au bord du polyèdre $\{x_1 \leq \cdots \leq x_n\}$.
- Généralisation avec collisions asymétriques: Karatzas, Pal, Shkolnikov AIHP '15,
 Ferrari, Spohn, Weiss EJP '15 (limite d'échelle de processus d'exclusion asymétriques).

Dynamique de la statistique d'ordre



Remarque : la statistique d'ordre $X_{(1)}(t) \leq \cdots \leq X_{(n)}(t)$ vérifie

$$dX_{(k)}(t) = \gamma_k dt + \sigma_k d\beta_k(t) + \frac{1}{2} dL_{k-1,k}(t) - \frac{1}{2} dL_{k,k+1}(t),$$

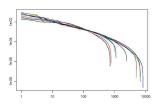
où $L_{k,k+1}$ est le **temps local en** 0 de la semimartingale $X_{(k+1)} - X_{(k)}$.

- Mouvement brownien normalement réfléchi au bord du polyèdre $\{x_1 \leq \cdots \leq x_n\}$.
- Généralisation avec collisions asymétriques: Karatzas, Pal, Shkolnikov AIHP '15,
 Ferrari, Spohn, Weiss EJP '15 (limite d'échelle de processus d'exclusion asymétriques).

Applications

Applications:

- ▶ files d'attente (Harrison IMA '88, Williams IMA '05);
- verres de spins (« competing particles », Ruzmaikina, Aizenman AoP '05, Arguin, Aizenman AoP '09);
- ▶ théorie des portefeuilles et distribution du capital.
 - J. Stiglitz, 2011: In our democracy, 1% of the people take nearly a quarter of the nation's income [...]. In terms of wealth rather than income, the top 1% control 40%.



Plan de l'exposé

Comportement en temps long

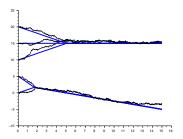
Limite de champ moyen

Distribution du capital

Nuages et particules collantes

Image pour $\sigma_1, \ldots, \sigma_n$ petits :

- formation de nuages autour de trajectoires déterministes;
- correspond à la dynamique des particules collantes (E, Rykov, Sinai CMP '96, Brenier, Grenier SINUM '98, Jourdain, R. EJP '14, JHDE '16+).



Condition de **stabilité** d'un amas/nuage constitué des particules de rang k_g, \ldots, k_d :

$$\forall k \in \{k_{\mathrm{g}}, \dots, k_{\mathrm{d}} - 1\}, \qquad \frac{1}{k - k_{\mathrm{g}} + 1} \sum_{\ell = k_{\mathrm{g}}}^{k} \gamma_{\ell} > \frac{1}{k_{\mathrm{d}} - k} \sum_{\ell = k + 1}^{k_{\mathrm{d}}} \gamma_{\ell}.$$

Ergodicité

On suppose la condition de stabilité vérifiée pour $k_{\rm g}=1,\,k_{\rm d}=n$ (un seul nuage).

Le centre de masse du système s'écrit

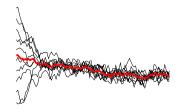
$$\bar{X}_n(t) := \frac{1}{n} \sum_{i=1}^n X_i(t) = \bar{X}_n(0) + \bar{\gamma}t + \frac{\bar{\sigma}}{\sqrt{n}} \bar{W}_n(t),$$

avec $\bar{\gamma} = \frac{1}{n} \sum_{k=1}^{n} \gamma_k$ et $\bar{\sigma}^2 = \frac{1}{n} \sum_{k=1}^{n} \sigma_k^2$.

Le système vu depuis son centre de masse

$$\forall i \in \{1,\ldots,n\}, \qquad \tilde{X}_i(t) := X_i(t) - \bar{X}_n(t)$$

est un processus de diffusion dans l'hyperplan $\{\tilde{x}_1 + \cdots + \tilde{x}_n = 0\}$, **ergodique**.



Pal, Pitman – AAP '08, Ichiba, Papathanakos, Banner, Karatzas, Fernholz – AAP '11: mesure invariante explicite si σ_k^2 affine en k.

Jourdain, Malrieu – AAP '08: convergence exponentielle à l'équilibre si σ_k^2 constant et γ_k décroissant.

Plan de l'exposé

Comportement en temps long

Limite de champ moyen

Distribution du capital

Coefficients champ moyen

On veut désormais étudier le comportement du modèle lorsque $n \to +\infty$.

- ▶ Il est nécessaire de se fixer deux tableaux triangulaires de coefficients $(\gamma_k^{(n)})_{1 \leq k \leq n}, (\sigma_k^{(n)})_{1 \leq k \leq n}.$
- ▶ Variation « continue » de la vitesse et de la variance en fonction du rang : on prend

$$\gamma_k^{(n)} = \gamma\left(\frac{k}{n}\right), \quad \sigma_k^{(n)} = \sigma\left(\frac{k}{n}\right), \qquad \gamma, \sigma: [0,1] \to \mathbb{R} \text{ continues}.$$

Hypothèse supplémentaire : $\sigma^2(u) > 0$ pour tout $u \in [0, 1]$.

Le système d'EDS se réécrit alors

$$\mathrm{d}X_i(t) = \gamma \left(\frac{1}{n} \sum_{j=1}^n \mathbb{1}_{\{X_j(t) \leq X_i(t)\}}\right) \mathrm{d}t + \sigma \left(\frac{1}{n} \sum_{j=1}^n \mathbb{1}_{\{X_j(t) \leq X_i(t)\}}\right) \mathrm{d}W_i(t).$$

- L'interaction entre les particules se fait au travers de la **mesure empirique**.
- ► Caractéristique des modèles de **champ moyen**, typiquement **McKean-Vlasov**.

Propagation du chaos

Le système d'EDS s'écrit encore

$$dX_i(t) = \gamma \left(F_n(t, X_i(t)) \right) dt + \sigma \left(F_n(t, X_i(t)) \right) dW_i(t),$$

avec $F_n(t, \cdot)$ la fonction de répartition empirique. On suppose les $X_i(0)$ i.i.d. selon $m \in \mathcal{P}(\mathbb{R})$.

Loi des grands nombres

Lorsque $n \to +\infty$, la mesure empirique $\nu_n = \frac{1}{n} \sum_{i=1}^n \delta_{(X_i(t))_{t \geq 0}}$ converge en probabilité, dans $\mathcal{P}(\mathrm{C}([0,+\infty[,\mathbb{R}]))$, vers la loi P de l'unique solution faible de l'EDS non-linéaire au sens de McKean

$$\begin{cases} \mathrm{d}X(t) = \gamma(F(t,X(t)))\mathrm{d}t + \sigma(F(t,X(t)))\mathrm{d}W(t), \\ F(t,x) = \mathbb{P}[X(t) \leq x], \end{cases}$$

avec $X(0) \sim m$.

Bossy, Talay - AAP '96, MC '97, Jourdain - ESAIM PS '97, SPA '00, puis Jourdain, R. - SPDE '13.

- ► Théorème central limite: Jourdain MCAP '00, Kolli, Skholnikov arXiv '16, principe de grandes déviations: Dembo, Shkolnikov, Varadhan, Zeitouni – CPAM '16.
- Formulation équivalente par **propagation du chaos** : pour tout $r \ge 1$, la famille $\{(X_1(t))_{t>0}, \ldots, (X_r(t))_{t>0}\}$ converge en loi vers $P^{\otimes r}$.

Évolution au cours du temps : en moyenne

Évolution en moyenne:

$$\begin{split} \mathbb{E}[X(t)] &= \mathbb{E}[X(0)] + \mathbb{E}\left[\int_{s=0}^{t} \gamma(F(s,X(s)))\mathrm{d}s\right] + \mathbb{E}\left[\int_{s=0}^{t} \sigma(F(s,X(s)))\mathrm{d}W(s)\right] \\ &= \mathbb{E}[X(0)] + \int_{s=0}^{t} \mathbb{E}\left[\gamma(F(s,X(s)))\right]\mathrm{d}s \\ &= \mathbb{E}[X(0)] + \bar{\gamma}t, \\ \mathrm{avec}\,\bar{\gamma} &= \int_{u=0}^{1} \gamma(u)\mathrm{d}u. \end{split}$$

Remarque : drift moyen du système de particules $\frac{1}{n}\sum_{k=1}^{n}\gamma\left(\frac{k}{n}\right)$.

Évolution au cours du temps : fluctuations

Convergence à l'équilibre du processus recentré $\tilde{X}(t) := X(t) - \bar{\gamma} t$?

► Sous la condition dite d'entropie d'Oleinik

$$\forall u \in]0,1[, \frac{1}{u} \int_{v=0}^{u} \gamma(v) dv > \frac{1}{1-u} \int_{v=u}^{1} \gamma(v) dv,$$

le processus $(\tilde{X}(t))_{t\geq 0}$ admet une infinité de mesures invariantes, toutes obtenues par translation les unes des autres.

- ▶ On note ϕ la fonction de répartition d'une de ces mesures invariantes, **explicite**.
- La loi de $\tilde{X}(t)$ s'obtient par translation de $\bar{\gamma}t$ de la loi de X(t).
- ▶ Une mesure invariante ϕ pour $(\tilde{X}(t))_{t\geq 0}$ donne une **onde progressive** $\phi(\cdot \bar{\gamma}t)$ pour l'équation de Fokker-Planck du processus $(X(t))_{t\geq 0}$.

Stabilité des ondes progressives

Théorème de stabilité

Sous la condition d'entropie d'Oleinik, soient :

- ► F(t,x) la fonction de répartition de X(t);
- $lack \phi$ la fonction de répartition de la mesure invariante pour $(\tilde X(t))_{t\geq 0}$ de même espérance que m.

Alors

$$\lim_{t \to +\infty} ||F(t, \cdot) - \phi(\cdot - \bar{\gamma}t)||_{\mathrm{L}^{1}(\mathbb{R})} = 0.$$

- Résultat classique en EDP, étudié dès les années 50 par Lax, Hopf, Gel'fand, Il'in, Oleinik, preuves: Freisthüler, Serre CPAM '98, Gasnikov IRAN '09.
- Généralisation avec distance de Wasserstein, provenant du transport optimal: *Jourdain, R. – SPDE '13.*
- ► Formulation « flot de gradient » esquissée dans R. MATAPLI '15.

Bilan:
$$X(t) = \bar{\gamma}t + \tilde{X}(t)$$
, avec $\mathbb{E}[\tilde{X}(t)] = \mathbb{E}[X(0)]$ et $\tilde{X}(t) \to \phi$.

Plan de l'exposé

Comportement en temps long

Limite de champ moyen

Distribution du capital

Mesure de capital

Rappel: capitalisation $S_i(t) = \exp(X_i(t))$, statistique d'ordre $S_{(1)}(t) \le \cdots \le S_{(n)}(t)$.

- Proportion de capital détenue par individu $i: \mu_i(t) = \frac{S_i(t)}{S_1(t) + \cdots + S_n(t)}$.
- ▶ Statistique d'ordre **inversée** : $\mu_{[1]}(t) \ge \cdots \ge \mu_{[n]}(t)$.
- Mesure de capital : mesure aléatoire sur [0, 1] définie par

$$\pi_t^n = \sum_{\ell=1}^n \mu_{[\ell]}(t) \delta_{\ell/n},$$

de sorte que $\pi^n_t([0,0.01])$ représente la proportion de capital détenue par les 1% les plus riches.

Propagation du chaos (Jourdain, R. - AF '15):

$$\begin{split} \pi^n_t &= \frac{\sum_{\ell=1}^n \exp(X_{[\ell]}(t)) \delta_{\ell/n}}{\sum_{\ell=1}^n \exp(X_{[\ell]}(t))} = \frac{\frac{1}{n} \sum_{\ell=1}^n \exp(F_n^{-1}(t,1-\frac{\ell}{n})) \delta_{\ell/n}}{\frac{1}{n} \sum_{\ell=1}^n \exp(F_n^{-1}(t,1-\frac{\ell}{n}))} \\ &\to \frac{\exp(F^{-1}(t,1-u)) \mathrm{d}u}{\int_{v=0}^1 \exp(F^{-1}(t,1-v)) \mathrm{d}v} =: \pi_t. \end{split}$$

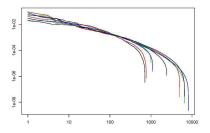
(le dénominateur converge dès que m est suffisamment intégrable)

Courbes de distribution du capital

Courbe de distribution du capital:

- ▶ log-log plot de $u \mapsto \pi_t(u)$,
- c'est-à-dire $F^{-1}(t, 1-u) \text{Cte}(t)$ en fonction de $\ln u$.

Courbes par décennie sur le marché US (1929-2009) :



Source: R. Fernholz, Wikimedia Commons.

- Remarquable stabilité en temps;
- partie linéaire pour les grandes capitalisations indique distribution en loi puissance.

Courbes stationnaires

Rappel:

$$\pi_t = \frac{\exp(F^{-1}(t, 1 - u)) du}{\int_{v=0}^1 \exp(F^{-1}(t, 1 - v)) dv},$$

 $ightharpoonup F(t, x + \bar{\gamma}t) \to \phi(x)$, avec ϕ explicite.

Il est tentant d'en déduire

$$\pi_t \to \frac{\exp(\phi^{-1}(1-u))du}{\int_{v=0}^1 \exp(\phi^{-1}(1-v))dv},$$

mais cela dépend du comportement en 1 de ϕ^{-1} .

Transition de phase, déjà observée dans Chatterjee, Pal - PTRF '10 : soit

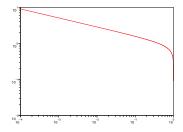
$$\alpha = 2\frac{\bar{\gamma} - \gamma(0)}{\sigma^2(0)},$$

alors

- si $\alpha < 1$, π_t converge vers δ_0 : concentration du capital,
- ightharpoonup si $\alpha > 1$, π_t converge vers la densité de capital ci-dessus : répartition du capital.

Courbes obtenues

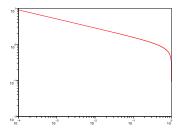
Un exemple de courbe de distribution :



à comparer avec la courbe de Fernholz.

Courbes obtenues

Un exemple de courbe de distribution :



à comparer avec la courbe de Fernholz.

Petite annonce : nous cherchons des candidats pour une thèse CERMICS/Laboratoire d'hydraulique Saint-Venant sur la prévision des crues, mots-clés : **EDP hyperbolique stochastique**, analyse numérique, mesure invariante.

Contact: julien.reygner@enpc.fr.

Merci de votre attention!