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Some notations :

One prediction point (site, location) : x ∈ D with D ⊂ Rd

Unknown response at this point : Y (x) ∈ R
n observations sites : X ∈ Dn

n observed responses : Y (X) ∈ Rn

The conditional distribution of Gaussian Process Y having covariance function k(., .) is

mfull (x) = E [Y (x)|Y (X)=F ] = k(x , X)k(X , X)−1F

cfull (x , x ′) = Cov
[

Y (x), Y (x ′)|Y (X)=F
]

= k(x , x ′)− k(x , X)k(X , X)−1k(X , x ′)

It can be represented as a mean function with confidence intervals.
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If we denote by n the number of observation points, the complexity of building such
models is

O(n2) in space (storing k(X ,X))
O(n3) in time (inverting k(X ,X)−1)

Furthermore, hyperparameter estimation requires to do this many times...

In practice,
space complexity is often more limiting than time complexity
the maximum number of observations that can be handled lies in the range
[1000, 10000].
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Various methods have been introduced to deal with a large number of observations :
methods based on inducing points (sparse GPs)
methods based on aggregating sub-models
low rank approximations
kernels with compact support
...

See Rasmussen and Williams, GPML, Chap. 8.
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Aggregation of sub-models

In this talk, we focus on the aggregation of sub-models : make many sub-models
based on subset of data, and then to find a way to merge these models together

-3
-1

1
3

0.0 0.4 0.8

-3
-1

1
3

0.0 0.4 0.8

→

0.0 0.2 0.4 0.6 0.8 1.0
-3

-2
-1

0
1

2
3

Journées MAS 2016 – Grenoble Nested Kriging Models 5 / 28



Nested Kriging Models



Introduction Nested Kriging Models Consistency Parameter estimation Numerical illustrations

Framework - Sub-models

Inputs :
One prediction point : x ∈ D.
Response random field : Y(x) ∈ R.
Sub-models vector : M(x) = (M1(x), . . . ,Mp(x)) ∈ Rp .
− Sub-models are typically functions of random vector Y (X) at observation points X.
− We consider only one prediction point x here.

Known covariances :
we assume that (Y (x),M(x)) is centred with (1 + p)× (1 + p) covariance matrix :

Cov [(Y (x),M(x))] =

(
k(x , x) kM(x)t

kM(x) KM(x)

)
(1)

kM(x) is a p × 1 vector with entries kM(x)i = Cov [Y (x),Mi (x)],
KM(x) is a p × p matrix with entries (KM(x))i,j = Cov [Mi (x),Mj (x)].

Quite general setting :
We assume the existence of the first two moments of (Y (x),M1(x), . . . ,Mp(x))

No other assumption on the joint distribution of (Y (x),M1(x), . . . ,Mp(x))

M(x) are covariates that are not necessarily a linear combinations of Y (X)
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Framework - Case of Kriging submodels
Let X1, . . . , Xp be matrices corresponding to subsets of observation points X .
Define p associated Kriging sub-models (or experts) :
Mi(x) = E [Y (x)|Y (Xi )] = k(x ,Xi )k(Xi ,Xi )−1Y (Xi )(

kM(x)
)

i
= Cov [Y (x),Mi (x)] = k(x ,Xi )k(Xi ,Xi )−1k(Xi , x)(

KM(x)
)

i,j
= Cov [Mi (x),Mj (x)] = k(x ,Xi )k(Xi ,Xi )−1k(Xi ,Xj )k(Xj ,Xj )−1k(Xj , x).

Here, Mi (x) are linear combinations of components of random vector Y (X)
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Main questions

Classical kriging outputs (Gaussian case) :
pointwise :

Kriging mean E [Y (x)|Y (X)]

Kriging variance V [Y (x)|Y (X)]

cross-points :
Kriging covariances Cov [Y (x),Y (x ′)|Y (X)]

Conditional sample paths

Corresponding questions when aggregating models :
pointwise :

Aggregation M1⊕...⊕p(x) of M1(x), . . . ,Mp(x), in order to estimate Y (x) ?
Variance v1⊕...⊕p(x) of the error M1⊕...⊕p(x)− Y (x) ?

cross-points :
Covariances between M1⊕...⊕p(x), M1⊕...⊕p(x ′) ?
Conditional sample paths (Gaussian case) ?
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Proposed pointwise aggregation

Definition (sub-models aggregation)
For a given point x ∈ D, we define the aggregation of the sub-models (or mixture of
experts) by

M1⊕...⊕p(x) = kM(x)tKM(x)−1M(x). (2)

Basic properties for pointwise estimation
Optimal : M1⊕...⊕p(x) is the BLUE of Y (x) that writes

∑
i αi (x)Mi (x).

Square error :
v1⊕...⊕p(x) = E

[
(Y (x)−M1⊕...⊕p(x))2

]
= k(x , x)− kM(x)tKM(x)−1kM(x)

Conditional distribution : If (Y (x),M(x)) is a Gaussian random vector, then the
conditional distribution of Y (x) given M(x) is normal with moments

E [Y (x)|M1(x), . . . ,Mp(x)] = M1⊕...⊕p(x)

V [Y (x)|M1(x), . . . ,Mp(x)] = v1⊕...⊕p(x).
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Example 1 - linear regressions
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Figure : Example 1 : aggregation of two linear regression models. The left panel shows the
sub-models and the right one the merged one in blue as well as the full model in red lines.
Exhibited confidence bands corresponds to a difference to mean value of two standard deviation.
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Example 2 - kriging submodels “3+2”
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Figure : Example 2 : aggregation of two Gaussian process regression models. The left panel shows
the sub-models and the right one the merged one in blue as well as the full model in red lines.
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Example 3 - fully informative submodels
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Figure : Example of merging sub-models without loss of information. The four submodels are
shown on the left panels. As it can be seen on the right panel, the merged model (blue lines and
shaded area) as well as the full model (red dashed lines) cannot be distinguished.
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Aggregated process

We now focus on the case where (Y ,M) is a centred Gaussian process with given
covariances

Cov
[

(Y (x),M(x)), (Y (x ′),M(x ′))
]

=

(
k(x , x ′) kM(x , x ′)t

kM(x ′, x) KM(x , x ′)

)
. (3)

Definition (Aggregated process)
We define the process Y1⊕...⊕p as

Y1⊕...⊕p = M1⊕...⊕p + ε′1⊕...⊕p (4)

where ε′1⊕...⊕p is an independent replicate of Y −M1⊕...⊕p .
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Some properties for aggregated process
known distribution : Y1⊕...⊕p is centred with known covariances

k1⊕...⊕p(x , x ′) = k(x , x ′) + 2kM(x)tk−1M (x)k−1M (x , x ′)k−1M (x ′)kM(x ′)

− kM(x)tk−1M (x)kM(x ′, x)− kM(x ′)tk−1M (x ′)kM(x , x ′).
(5)

optimality : If M1⊕...⊕p(x) writes M1⊕...⊕p(x) = λ1⊕...⊕p(x)tY (X) and if
M1⊕...⊕p(X) = Y (X) then

M1⊕...⊕p(x) = E [Y1⊕...⊕p(x)|Y1⊕...⊕p(X)]

v1⊕...⊕p(x) = V [Y1⊕...⊕p(x)|Y1⊕...⊕p(X)] .

One can calculate Cov [Y1⊕...⊕p(x),Y1⊕...⊕p(x ′)|Y1⊕...⊕p(X)].
One can get conditional sample paths of Y1⊕...⊕p given Y1⊕...⊕p(X).
On can get interpretations and bounds on the errors M1⊕...⊕p −Mfull and
v1⊕...⊕p − vfull .
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Figure : Interpretation of the results from Example 2 as a posterior Gaussian process distribution.
The left panel shows the prior Y1⊕...⊕p and the right one the conditional distribution given
Y1⊕...⊕p(X) = Y (X).

The approximated model is equivalent to an exact model based on a modified process.
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Iterative model

Aggregation and covariance structure propagation at each level ν :

From

{
(Mν (x))i = Mνi (x)

(kν (x))i = Cov
[

Y (x),Mνi (x)
]

(Kν (x))ij = Cov
[

Mνi (x),Mνj (x)
] get


(Mν+1(x))i = αν+1

i (x)t
(

Mν (x)
[Iν+1

i ]

)
(kν+1(x))i = αν+1

i (x)t
(

kν (x)
[Iν+1

i ]

)
(Kν+1(x))ij = αν+1

i (x)t

(
Kν

[Iν+1
i ,Iν+1

j ]

)
αν+1

j (x)

with vectors of optimal weights αν+1
i (x) =

(
Kν

[Iν+1
i ,Iν+1

i ]

)−1 (
kν(x)

[Iν+1
i ]

)
.
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Algorithm 1: Iterative kriging algorithm
inputs : M1, vector of length n1 (sub-models evaluated at x)

k1, vector of length n1 (covariance between Y (x) and sub-models at x)
K1, matrix of size n1 × n1 (covariance between sub-models at x)
I, a list describing the tree structure

outputs: Mνmax , Kνmax

for ν = 2, . . . , νmax do
for i = 1, . . . , nν do

M ← subvector of Mν−1 on Iνi
K ← submatrix of Kν−1 on Iνi
if ν = 2 then k ← k1 else k ← Diag(K)

αi ← K−1k
Mν [i]← (αi )

t M
Kν [i, i]← (αi )

t k
for j = 1, . . . , i − 1 do

K ← submatrix of Kν−1 on Iνi × Iνj
Kν [i, j]← (αi )

t Kαj
Kν [j, i]← Kν [i, j]

Reachable storage footprint O(n). Reachable algorithm complexity O(qn2).
Possibility of parallel computing.
n number of observations, q number of prediction points.
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Deisenroth and Ng 2015, Cao and Fleet 2014 and Van Stein et al 2015 propose
aggregations based on sub-models variances vi (x) :

M̄1⊕...⊕pn (x) =

pn∑
k=1

αk,n(v1(x), ..., vpn (x), vprior (x))Mk (x)

where a, b are positive deterministic continuous functions and

αk,n(v1(x), ..., vpn (x), vprior (x)) ≤
a(vk (x), vprior (x))∑pn
l=1 b(vl (x), vprior (x))

,

Proposition (Non-Consistency of variance-based methods)
Let the observation domain X be fixed and bounded, let x0 ∈ X be fixed and let
N, p →∞. For a standard class of covariance functions, with the aggregation methods
above, there exists a dense triangular array of observation points so that

lim inf
N,p→∞

E
(
{Y (x0)−M1⊕...⊕p(x0)}2

)
> 0

Proposition (Consistency)
=⇒ On the contrary, our proposed aggregation method yields a consistent predictor.

lim inf
N,p→∞

E
(
{Y (x0)−M1⊕...⊕p(x0)}2

)
= 0

Note that other simple predictors are consistent !Journées MAS 2016 – Grenoble Nested Kriging Models 18 / 28
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Parametric covariance model

Set of covariance functions
{σ2kθ, σ2 ≥ 0, θ ∈ Θ}

with Θ ⊂ Rm

Yields predictors and predictive variances

m1⊕...⊕p,θ(x)

and
v1⊕...⊕p,σ2,θ(x)

Goal : θ̂ and σ̂2

Journées MAS 2016 – Grenoble Nested Kriging Models 19 / 28



Introduction Nested Kriging Models Consistency Parameter estimation Numerical illustrations

Stochastic gradient for θ̂

Let M1⊕...⊕p,θ,−i (xi ) be the Leave One Out prediction of yi based on the n − 1
remaining points

We want to use the Leave One Out estimator

θ̂ ∈ argmin
θ∈Θ

1
n

n∑
i=1

{
M1⊕...⊕p,θ,−i (xi )− yi

}2
Computing q Leave One Out errors costs O(qn2) flops =⇒ stochastic gradient :

θk+1 = θk−

akh

{
1
εk

(
1
q

∑
i∈I

(
M1⊕...⊕p,θ+εk h,−i (xi )− yi

)2
−

1
q

∑
i∈I

(
M1⊕...⊕p,θ−εk h,−i (xi )− yi

)2)}
where I is a random sample of size q and h is a random direction

=⇒ Stochastic gradient is not worth it for the exact Gaussian process prediction
(O(n3) cost for q error computations) but is useful with our aggregation method
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Estimation of σ2

σ̂2 =
1
n

n∑
i=1

(
yi −m1⊕...⊕p,−i,θ̂(xi )

)2
v1⊕...⊕p,−i,1,θ̂(xi ),

which is equivalent to

1
n

n∑
i=1

(
yi −m1⊕...⊕p,−i,θ̂(xi )

)2
v1⊕...⊕p,−i,σ̂2,θ̂(xi )

= 1.
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Some alternatives methods
For a given x , let fMi (y) be the predictive density of model i and fM(y) denote the
aggregated prediction :
Various methods have been proposed in the literature :

Product of Experts (PoE)

fM(y) ∝
∏

fMI (y)

Generalised PoE
fM(y) ∝

∏
f βi
MI

(y)

Bayesian Committee Machine (BCM)

fM(y) ∝
∏

fMI (y)

f (p−1)
Y (y)

Robust BCM

fM(y) ∝

∏
f βi
MI

(y)

f

(∑
βi−1
)

Y (y)

Smallest prediction variance (SPV) :
fspv (y) = fk (y) with k = argmin

i∈{1,...,p}
vi (x).

Ref : Deisenroth and Wei Ng, ICML proceedings 2015Journées MAS 2016 – Grenoble Nested Kriging Models 22 / 28
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Classical methods PoE, GPoE, BCM, RBCM (13 submodels based on two points
each, n=26)
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Proposed nested method - Average distance to full model boxplot.
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Industrial case study

Data provided by EDF (Geraud Blatman)
10, 000 input-outputs (xi , f (xi )), dimension d = dim(xi ) = 6

f (xi ) = log

[
m∑

j=1

(F (xi , cj )−mj )
2

]
cj : experimental condition, F : code, xi : code parameter, mj experimental value
n = 9000 data points in the learning base
nt = 1000 data points in the test base
One aggregation by our method or the “sum-based” aggregation methods
p = 20 or p = 90 aggregated subsamples
Subsamples chosen with K-means or randomly
Covariance functions : exponential, Matérn 3/2, Matérn 5/2. Ordinary Kriging
Covariance parameters chosen by our proposed stochastic gradient method or by
minimizing the sum of the likelihoods over the subsamples
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Prediction criteria

MSE (should be minimal)

MSE =
1
nt

nt∑
i=1

(m1⊕...⊕p,θ̂(xt,i )− f (xt,i ))2,

MNLP (should be minimal)

=
1
nt

nt∑
i=1

(
1
2
log(2πv1⊕...⊕p,σ̂2,θ̂(xt,i )) +

(m1⊕...⊕p,θ̂(xt,i )− f (xt,i ))2

2v1⊕...⊕p,σ̂2,θ̂(xt,i )

)
,

(other criteria in the article)
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Prediction results (a)
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Figure : Box plots of 20 values of the mean square error (MSE) prediction criterion and of the
logarithm of the mean negative log probability (MNLP) prediction criterion where the learning and
test sets are randomly generated. (p = 20 subsamples obtained from the k-means algorithm ;
Matérn 5/2 covariance function). Not represented if too large MSE or MLNP values. Covariance
parameters estimated by log lik for SPV, PoE, gPoE1, gPoE2, BCM and rBCM and by LOO for
our aggregation procedure.
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Prediction results (b)
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Figure : Same settings as in Figure 5 but with p = 90 subsamples, randomly selected. Too large
values MSE or MLNP are not represented.
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Conclusion

On proposed nested Kriging model : optimal linear weighting of submodels (or exact
method on a modified process)

proven to provide consistent predictors (some other classical aggregation
techniques are shown inconsistent)
bounds on errors compared to the full model (not presented here)
dedicated covariance parameter estimation procedure
encouraging numerical results but with increased computational cost (compared
to other methods)

Perspectives
The stochastic gradient algorithm could be further investigated
Further reduction of the complexity (tree structure and approximations)
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Thank you for your attention !

preprint available on Hal.
Nested Kriging estimations for datasets with large number of observations. 2016. <hal-01345959>
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