Asymptotic behavior of the iteration of a cellular automaton on a probability measure

Journée MAS 2016 Grenoble

Mathieu Sablik

29 août 2016

Problematic

Problematic 2 / 19

 #	#	#	#	#	1, q 1	1	#	#	#	#	- - -
 #	#	#	#	#	1	♯, q 1	#	#	#	#	
 #	#	#	#	Ħ	♯, q o	#	#	#	#	#	

 #	#	#	#	#	0	1, q 2	#	#	#	#]
 #	#	#	#	#	1, <i>q</i> 1	1	#	#	#	#	
 #	#	#	#	#	1	♯, q 1	#	#	#	#	
 #	#	#	#	#	‡, <i>q</i> o	#	#	#	#	#	

 #	#	#	#	#	0, q o	1	#	#	#	#	
 #	#	#	#	#	0	$1, q_2$	#	#	#	#	
 #	#	#	#	#	1, q 1	1	#	#	#	#	
 #	#	#	#	#	1	‡, q 1	#	#	#	#	
 #	t	#	#	Ħ	♯, q ₀	#	#	#	#	Ħ	

• • •	#	#	#	#	#	1	1, q 1	#	#	#	#	
• • •	#	#	#	#	#	0, q o	1	#	#	#	#]
• • •	#	#	#	#	#	0	1, q 2	#	#	#	#	
• • •	#	#	#	#	#	1, q 1	1	#	#	#	#	
• • •	#	#	#	#	#	1	♯, q 1	#	#	#	#	
	Ħ	#	#	#	#	‡, q o	#	#	#	#	#	

 #	#	#	#	#	1	0	♯, q 2	#	#	#	 -
 #	#	#	#	#	1	1, q 1	#	#	#	#	
 #	#	#	#	#	0, q 0	1	#	#	#	#	
 #	#	#	#	#	0	$1, q_2$	#	#	#	#	
 #	#	#	#	#	1, <i>q</i> 1	1	#	#	#	#	
 #	**	#	**	#	1	‡, q 1	#	#	#	#	
 #	#	#	#	#	‡, q o	#	#	#	#	#	

• • •	#	#	#	#	#	1	0, q 2	1	#	#	#	
	#	#	#	#	#	1	0	♯, q 2	#	#	#	
• • •	#	#	#	#	#	1	1, q 1	#	#	#	#	
• • •	#	#	#	#	#	0, q o	1	#	#	#	#	
• • •	#	#	#	#	#	0	$1, q_2$	#	#	#	#	
• • •	#	#	#	#	#	1, q 1	1	#	#	#	#	
• • •	#	#	#	#	#	1	‡, q 1	#	#	#	#	
	#	#	#	#	#	♯, q ₀	#	#	#	#	#	

 #	#	#	#	#	$1, q_2$	1	1	#	#	#	ļ
 #	#	#	#	#	1	0, q 2	1	#	#	#	 .
 #	#	#	#	#	1	0	♯, q 2	#	#	#	 .
 #	#	#	#	#	1	1, q 1	#	#	#	#	 .
 #	#	#	#	#	0, q 0	1	#	#	#	#	 .
 #	#	#	#	#	0	$1, q_2$	#	#	#	#	 .
 #	#	#	#	#	1, <i>q</i> 1	1	#	#	#	#	
 #	#	#	#	#	1	‡, q 1	#	#	#	#	
 #	#	#	#	#	‡, q o	Ħ	#	#	#	Ħ	

	#	#	#	#	♯, <i>q</i> o	1	1	1	#	#	#	ļ
• • •	#	#	#	#	#	$1, q_2$	1	1	#	#	#	
• • •	#	#	#	#	#	1	0, q 2	1	#	#	#	
• • •	#	#	#	#	#	1	0	♯, q 2	#	#	#	
• • •	#	#	#	#	#	1	1, q 1	#	#	#	#	ļ
• • •	#	#	#	#	#	0, q 0	1	#	#	#	#	
• • •	#	#	#	#	#	0	1, q 2	#	#	#	#	
• • •	#	#	#	#	#	1, <i>q</i> 1	1	#	#	#	#	
• • •	#	#	#	#	#	1	♯, q 1	#	#	#	#	ļ
	#	#	#	Ħ	#	‡, q o	#	#	‡	#	#	

÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	
 #	#	#	#	1	$1, q_1$	1	1	#	#	#	ļ
 #	#	#	#	♯, <i>q</i> o	1	1	1	#	#	#	
 #	#	#	#	#	$1, q_2$	1	1	#	#	#	ļ
 #	#	#	#	#	1	0, q 2	1	#	#	#	ļ
 #	#	#	#	#	1	0	‡,q ₂	#	#	#	ļ
 #	#	#	#	#	1	$1, q_1$	#	#	#	#	
 #	#	#	#	#	0, q 0	1	#	#	#	#	
 #	#	#	#	#	0	$1, q_2$	#	#	#	#	
 #	#	#	#	#	$1, q_1$	1	#	#	#	#	
 #	#	#	#	#	1	‡, q 1	#	#	#	#	
 Ħ	Ħ	Ħ	Ħ	Ħ	♯, q o	Ħ	Ħ	Ħ	Ħ	Ħ	

÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	
 #	#	#	#	1	$1, q_1$	1	1	#	#	#	ļ
 #	#	#	#	♯, <i>q</i> o	1	1	1	#	#	#	
 #	#	#	#	#	$1, q_2$	1	1	#	#	#	ļ
 #	#	#	#	#	1	0, q 2	1	#	#	#	ļ
 #	#	#	#	#	1	0	♯, q 2	#	#	#	ļ
 #	#	#	#	#	1	1, q 1	#	#	#	#	
 #	#	#	#	#	0, q 0	1	#	#	#	#	
 #	#	#	#	#	0	$1, q_2$	#	#	#	#	
 #	#	#	#	#	1, q 1	1	#	#	#	#	
 #	#	#	#	#	1	♯, q 1	#	#	#	#	ļ
 #	#	#	#	#	‡, <i>q</i> o	#	#	#	#	#	ļ

÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	
 #	#	#	#	1	$1, q_1$	1	1	#	#	#	ļ
 #	#	#	#	♯, <i>q</i> o	1	1	1	#	#	#	
 #	#	#	#	#	$1, q_2$	1	1	#	#	#	ļ
 #	#	#	#	#	1	0, q 2	1	#	#	#	ļ
 #	#	#	#	#	1	0	‡,q ₂	#	#	#	ļ
 #	#	#	#	#	1	$1, q_1$	#	#	#	#	
 #	#	#	#	#	0, q 0	1	#	#	#	#	
 #	#	#	#	#	0	$1, q_2$	#	#	#	#	
 #	#	#	#	#	$1, q_1$	1	#	#	#	#	
 #	#	#	#	#	1	‡, q 1	#	#	#	#	
 Ħ	Ħ	Ħ	Ħ	Ħ	♯, q o	Ħ	Ħ	Ħ	Ħ	Ħ	

÷	÷	÷	:	:	:	÷	:	÷	÷	÷	
 #	#	#	#	1	$1, q_1$	1	1	#	#	#	
 #	#	#	#	♯, q o	1	1	1	#	#	#	
 #	#	#	#	#	$1, q_2$	1	1	#	#	#	
 #	#	#	#	#	1	0, q 2	1	#	#	#	
 #	#	#	#	#	1	0	♯, q 2	#	#	#	
 #	#	#	#	#	1	$1, q_1$	#	#	#	#	
 #	#	#	#	#	0, q 0	1	#	#	#	#	
 #	#	#	#	#	0	1, q 2	#	#	#	#	
 #	#	#	#	#	1, q 1	1	#	#	#	#	
 #	#	#	#	#	1	‡, q 1	#	#	#	#	
 Ħ	Ħ	Ħ	Ħ	Ħ	♯, q o	Ħ	t	Ħ	Ħ	Ħ	

÷	÷	÷	:	:	:	÷	:	:	:	:	
 #	#	#	#	1	1, q 1	1	1	#	#	#	
 #	#	#	#	♯, <i>q</i> o	1	1	1	#	#	#	
 #	#	#	#	#	$1, q_2$	1	1	#	#	#	
 #	#	#	#	#	1	0, q 2	1	#	#	#	
 #	#	#	#	#	1	0	‡,q ₂	#	#	#	
 #	#	#	#	#	1	1, q 1	#	#	#	#	
 #	#	#	#	#	0, q 0	1	#	#	#	#	
 #	#	#	#	#	0	1, q 2	#	#	#	#	
 #	#	#	#	#	1, q 1	1	#	#	#	#	
 #	#	#	#	#	1	♯, q 1	#	#	#	#	
 #	#	#	#	#	‡, q o	#	#	#	#	#	

An example of model of computation:

:	÷	÷	:	:	:	:	:	:	:	÷	
 #	#	#	#	1	$1, q_1$	1	1	#	#	#	ļ
 #	#	#	#	♯, q o	1	1	1	#	#	#	
 #	#	#	#	#	$1, q_2$	1	1	#	#	#	ļ
 #	#	#	#	#	1	0, q 2	1	#	#	#	
 #	#	#	#	#	1	0	∦, q 2	#	#	#	
 #	#	#	#	#	1	1, q 1	#	#	#	#	
 #	#	#	#	#	0, q 0	1	#	#	#	#	
 #	#	#	#	#	0	$1, q_2$	#	#	#	#	
 #	#	#	#	#	1, <i>q</i> 1	1	#	#	#	#	
 #	#	#	#	#	1	‡, q 1	#	#	#	#	
 #	#	#	#	#	♯, q ₀	#	#	#	#	#	

Some probabilstic problematics:

- What are the random initial configurations?
- What are the generic asymptotic behavior?
- What is the robustness to random perturbations?

Problematic Algorithm and probability

Definition

- $A = \{\Box, \blacksquare\}$ finite alphabet
- $\mathcal{A}^{\mathbb{Z}^d}$ set of *configurations*
- $\overline{F}: \mathcal{A}^{\mathbb{U}} \longrightarrow \mathcal{A}$ local rules

$$F(x)_{\mathbf{i}} = \overline{F}(x_{\mathbf{i}+\mathbb{U}}) \text{ for all } x \in \mathcal{A}^{\mathbb{Z}^d}$$

Definition

- $A = \{\Box, \blacksquare\}$ finite alphabet
- $\mathcal{A}^{\mathbb{Z}^d}$ set of *configurations*
- $\overline{F}: \mathcal{A}^{\mathbb{U}} \longrightarrow \mathcal{A}$ local rules

$$F(x)_{i} = \overline{F}(x_{i+\mathbb{U}}) \text{ for all } x \in \mathcal{A}^{\mathbb{Z}^{d}}$$

Problematic

Cellular Automata

Definition

- $A = \{\Box, \blacksquare\}$ finite alphabet
- $\mathcal{A}^{\mathbb{Z}^d}$ set of *configurations*
- $\overline{F}: \mathcal{A}^{\mathbb{U}} \longrightarrow \mathcal{A}$ local rules

$$F(x)_{i} = \overline{F}(x_{i+\mathbb{U}}) \text{ for all } x \in \mathcal{A}^{\mathbb{Z}^{d}}$$

Problematic

Cellular Automata

Definition

- $A = \{\Box, \blacksquare\}$ finite alphabet
- $\mathcal{A}^{\mathbb{Z}^d}$ set of *configurations*
- $\overline{F}: \mathcal{A}^{\mathbb{U}} \longrightarrow \mathcal{A}$ local rules

$$F(x)_{i} = \overline{F}(x_{i+\mathbb{U}}) \text{ for all } x \in \mathcal{A}^{\mathbb{Z}^{d}}$$

Problematic

Cellular Automata

Definition

- $A = \{\Box, \blacksquare\}$ finite alphabet
- $\mathcal{A}^{\mathbb{Z}^d}$ set of *configurations*
- $\overline{F}: \mathcal{A}^{\mathbb{U}} \longrightarrow \mathcal{A}$ local rules

$$F(x)_{i} = \overline{F}(x_{i+\mathbb{U}}) \text{ for all } x \in \mathcal{A}^{\mathbb{Z}^{d}}$$

Problematic

Cellular Automata

4 / :

Definition

- $A = \{\Box, \blacksquare\}$ finite alphabet
- $\mathcal{A}^{\mathbb{Z}^d}$ set of *configurations*
- $\overline{F}: \mathcal{A}^{\mathbb{U}} \longrightarrow \mathcal{A} \ local \ rules$

$$F(x)_{\mathbf{i}} = \overline{F}(x_{\mathbf{i}+\mathbb{U}}) \text{ for all } x \in \mathcal{A}^{\mathbb{Z}^d}$$

Problematic Cellular Automata 4 /

Definition

- $A = \{\Box, \blacksquare\}$ finite *alphabet*
- $\mathcal{A}^{\mathbb{Z}^d}$ set of *configurations*
- $\overline{F}: \mathcal{A}^{\mathbb{U}} \longrightarrow \mathcal{A} \ local \ rules$

$$F(x)_{\mathbf{i}} = \overline{F}(x_{\mathbf{i}+\mathbb{U}}) \text{ for all } x \in \mathcal{A}^{\mathbb{Z}^d}$$

Theorem (Hedlund-1969)

 $(\mathcal{A}^{\mathbb{Z}}, F)$ is a CA iff $F : \mathcal{A}^{\mathbb{Z}} \longrightarrow \mathcal{A}^{\mathbb{Z}}$ is continuous and $F \circ \sigma = \sigma \circ F$.

$$\sigma: \quad \mathcal{A}^{\mathbb{Z}} \longrightarrow \quad \mathcal{A}^{\mathbb{Z}}$$
$$(x_i)_{i \in \mathbb{Z}} \longmapsto \quad (x_{i+1})_{i \in \mathbb{Z}}.$$

Problematic Cellular Automata 4 / 19

Classification of Wolfram (1982):

Classification of Wolfram (1982):

Highlighting and studying the propagation of information:

Empirical approach

Classification of Wolfram (1982):

Highlighting and studying the propagation of information:

- Empirical approach
- Algorithmically approach

Classification of Wolfram (1982):

Highlighting and studying the propagation of information:

- Empirical approach
- Algorithmically approach
- Dynamical approach

Classification of Kurka:

Classification of Wolfram (1982):

Highlighting and studying the propagation of information:

- Empirical approach
- Algorithmically approach
- Dynamical approach
- Probabilistic approach

Some space-time diagrams

Classification of Wolfram (1982):

Highlighting and studying the propagation of information:

- Empirical approach
- Algorithmically approach
- Dynamical approach
- Probabilistic approach

$\Lambda(F) = \bigcap_{n \in \mathbb{N}}$	$_{\mathbb{I}}F^{n}(\mathcal{A}^{\mathbb{Z}})$
$\Lambda \bigg(\\ \{ x \in \mathcal{A}^{\mathbb{Z}} : \sqcap \} \bigg) \bigg)$) = n _n + v

$$\mu\text{-limit sets}$$

$$u \notin \mathcal{L}\left(\Lambda_{\mu}(F)\right)$$

$$\Leftrightarrow \lim_{n \to \infty} \mu(F^{-n}([u])) = 0$$

$$\Lambda_{\mu}\left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array}\right) = \begin{cases} \left\{ \begin{array}{c} \\ \\ \\ \\ \end{array}\right\} & \text{if } \mu([\square]) > 0 \end{cases}$$

$$\left\{ \begin{array}{c} \\ \\ \\ \\ \end{array}\right\} & \text{if not} \end{cases}$$

Different studies of the limit/ μ -limit sets: Hurley, Kari, Maass, Kurka, Theyssier...

Limit sets

Some classes of measures: Dynamical properties

• Let $\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ be the set of σ -invariant probability measures. Usually \mathcal{M}_{σ} is endowed with the weak* topology:

$$\mu_n \xrightarrow[n \to \infty]{} \nu$$
 iff $\forall u \in \mathcal{A}^{\mathbb{U}}$ one has $\mu_n([u]) \xrightarrow[n \to \infty]{} \nu([u])$.

 $\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ is convex, compact and metrizable. $\forall \mu, \nu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ put:

$$d(\mu, \nu) = \sum_{n \in \mathbb{N}} \frac{1}{|\mathcal{A}|^n} \max_{u \in \mathcal{A}^n} |\mu([u]) - \nu([u])|.$$

• μ is σ -ergodic iff all σ -invariant subset $B \in \mathfrak{B}$, one has $\mu(B) = 0$ or 1. Consider $u, v \in \mathcal{A}^*$ and $x \in \mathcal{A}^{\mathbb{Z}}$.

The density of
$$u$$
 in v is $d_v(u) = \frac{\operatorname{Card}\{i \in [0, |u|-1]: v_{i,i+|u|-1} = u\}}{|v|-|u|+1}$. The density of u in x is $d_x(u) = \limsup_{n \to \infty} d_{x_{[-n,n]}}(u)$.

We recall that for a σ -ergodic measure μ one has:

$$\mu([u]) = d_x(u)$$
 for μ -almost all $x \in A^{\mathbb{Z}}$

Problematic Measures 6 / 19

Some classes of measures: Standard examples

- Dirac measure: for $x \in \mathcal{A}^{\mathbb{Z}}$ and $u \in \mathcal{A}^*$, $\delta_x([u]) = \begin{cases} 0 & \text{if } x \notin [u] \\ 1 & \text{if not} \end{cases}$
- \bullet σ -invariant measure supported by a periodic point:

For
$$w \in \mathcal{A}^*$$

$$\widehat{\delta_w} = \frac{1}{|w|} \sum_{i \in [1;|w|]} \delta_{\sigma^i(\infty_{w^{\infty}})}$$

Fact: $\{\widehat{\delta_w} : w \in \mathcal{A}^*\}$ is dense in $\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$

• Bernoulli measure associated to $(p_a)_{a\in\mathcal{A}}\in[0;1]^{\mathcal{A}}$ such that $\sum_{a\in\mathcal{A}}p_a=1$:

$$\lambda_{(p_{\mathbf{a}})_{\mathbf{a}\in\mathcal{A}}}([u])=p_{u_{\mathbf{1}}}\dots p_{u_{n}} \text{ for } u=u_{1}\dots u_{n}\in\mathcal{A}^{*}.$$

Markov measure

Problematic Measures 7

$$F: \mathcal{M}_{\sigma}(A^{\mathbb{Z}}) \longrightarrow \mathcal{M}_{\sigma}(\mathring{A}^{\mathbb{Z}})$$

$$\mu \longmapsto F\mu \qquad such that \forall B \in \mathfrak{B} \quad F\mu(B) = \mu(F^{-1}(B)).$$

Problematic Some exemples 8 /

$$F: \mathcal{M}_{\sigma}(A^{\mathbb{Z}}) \longrightarrow \mathcal{M}_{\sigma}(\tilde{A}^{\mathbb{Z}})$$

$$\mu \longmapsto F\mu \qquad such that \ \forall B \in \mathfrak{B} \quad F\mu(B) = \mu(F^{-1}(B)).$$

Examples:

If
$$\mu([\Box]) > 0$$
 then $F^n \mu \xrightarrow[n \to \infty]{} \widehat{\delta_{\Box}}$

$$F: \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}}) \longrightarrow \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$$

$$\mu \longmapsto F\mu \qquad such that \ \forall B \in \mathfrak{B} \quad F\mu(B) = \mu(F^{-1}(B)).$$

Examples:

If
$$\mu([\Box]) > 0$$
 then $F^n \mu \xrightarrow[n \to \infty]{} \widehat{\delta_{\Box}}$

$$F^{n}\mu \xrightarrow[n\to\infty]{} \begin{cases} \widehat{\delta_{\square}} & \text{if } \mu([\blacksquare]) = \mu([\blacksquare]) \\ \nu \in \mathcal{M}_{\sigma}(\{\blacksquare, \square\}^{\mathbb{Z}}) & \text{if } \mu([\blacksquare]) > \mu([\blacksquare]) \end{cases} (Ferrari) \\ \nu \in \mathcal{M}_{\sigma}(\{\blacksquare, \square\}^{\mathbb{Z}}) & \text{if } \mu([\blacksquare]) < \mu([\blacksquare]) \end{cases}$$

Problematic Some exemples 8 /

Iteration of measures by a cellular automaton

$$F: \mathcal{M}_{\sigma}(A^{\mathbb{Z}}) \longrightarrow \mathcal{M}_{\sigma}(\mathring{A}^{\mathbb{Z}})$$

$$\mu \longmapsto F\mu \qquad such that \forall B \in \mathfrak{B} \quad F\mu(B) = \mu(F^{-1}(B)).$$

Examples:

If
$$\mu([\Box]) > 0$$
 then $F^n \mu \xrightarrow[n \to \infty]{} \widehat{\delta_{\Box}}$

$$F^{n}\mu \xrightarrow[n\to\infty]{} \begin{cases} \widehat{\delta_{\square}} & \text{if } \mu([\blacksquare]) = \mu([\blacksquare]) \\ \nu \in \mathcal{M}_{\sigma}(\{\blacksquare, \square\}^{\mathbb{Z}}) & \text{if } \mu([\blacksquare]) > \mu([\blacksquare]) \text{ (Ferrari)} \\ \nu \in \mathcal{M}_{\sigma}(\{\blacksquare, \square\}^{\mathbb{Z}}) & \text{if } \mu([\blacksquare]) < \mu([\blacksquare]) \end{cases}$$

$$F^n \mu \xrightarrow[n \to \infty]{} \mu[\blacksquare] \widehat{\delta_\square} + \mu[\square] \widehat{\delta_\blacksquare} + \mu[\blacksquare] \widehat{\delta_\blacksquare}$$
 (Hellouin)

Problematic Some exemples 8 /

$$F: \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}}) \longrightarrow \mathcal{M}_{\sigma}(\tilde{\mathcal{A}}^{\mathbb{Z}})$$

$$\mu \longmapsto F\mu \qquad such that \ \forall B \in \mathfrak{B} \quad F\mu(B) = \mu(F^{-1}(B)).$$

Examples:

If
$$\mu([\Box]) > 0$$
 then $F^n \mu \xrightarrow[n \to \infty]{} \widehat{\delta_{\Box}}$

$$F^{n}\mu \xrightarrow[n\to\infty]{} \begin{cases} \widehat{\delta}_{\square} & \text{if } \mu(\llbracket \blacksquare \rrbracket) = \mu(\llbracket \blacksquare \rrbracket) \\ \nu \in \mathcal{M}_{\sigma}(\{\blacksquare, \square\}^{\mathbb{Z}}) & \text{if } \mu(\llbracket \blacksquare \rrbracket) > \mu(\llbracket \blacksquare \rrbracket) \text{(Ferrari)} \\ \nu \in \mathcal{M}_{\sigma}(\{\blacksquare, \square\}^{\mathbb{Z}}) & \text{if } \mu(\llbracket \blacksquare \rrbracket) < \mu(\llbracket \blacksquare \rrbracket) \end{cases}$$

$$F^n \mu \xrightarrow{n \to \infty} \mu[\blacksquare] \widehat{\delta_{\square}} + \mu[\square] \widehat{\delta_{\blacksquare}} + \mu[\blacksquare] \widehat{\delta_{\blacksquare}}$$
 (Hellouin)

$$\frac{1}{n+1}\sum_{k=0}^{n}F^{k}\mu \xrightarrow[n\to\infty]{} \lambda$$
 (Maass-Martinez, Pivato-Yassawi...)

Characterization of measure obtained asymptotically

Measure obtained asymptotically

• $\mu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ is *computable* if there exists $f : \mathcal{A}^* \times \mathbb{N} \to \mathbb{Q}$ computable such that

$$|\mu([u]) - f(u,n)| < \frac{1}{n}.$$

• $\mu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ is *limit-computable* if there exists $f: \mathcal{A}^* \times \mathbb{N} \to \mathbb{Q}$ computable such that

$$\lim_{n\to\infty}f(u,n)=\mu([u]).$$

Measure obtained asymptotically

• $\mu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ is *computable* if there exists $f : \mathcal{A}^* \times \mathbb{N} \to \mathbb{Q}$ computable such that

$$|\mu([u]) - f(u,n)| < \frac{1}{n}.$$

• $\mu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ is *limit-computable* if there exists $f: \mathcal{A}^* \times \mathbb{N} \to \mathbb{Q}$ computable such that

$$\lim_{n\to\infty} f(u,n) = \mu([u]).$$

Computability obstruction: $\mu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ computable and $F^n \mu \xrightarrow[n \to \infty]{} \nu$ then ν is limit-computable.

Measure obtained asymptotically

• $\mu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ is *computable* if there exists $f : \mathcal{A}^* \times \mathbb{N} \to \mathbb{Q}$ computable such that

$$|\mu([u])-f(u,n)|<\frac{1}{n}.$$

• $\mu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ is *limit-computable* if there exists $f : \mathcal{A}^* \times \mathbb{N} \to \mathbb{Q}$ computable such that

$$\lim_{n\to\infty}f(u,n)=\mu([u]).$$

Computability obstruction: $\mu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ computable and $F^n \mu \xrightarrow[n \to \infty]{} \nu$ then ν is limit-computable.

Theorem of realization (Hellouin-S.-14)

Let $\nu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ be limit-computable, there exists $F : \mathcal{B}^{\mathbb{Z}} \to \mathcal{B}^{\mathbb{Z}}$ with $\mathcal{A} \subset \mathcal{B}$

$$\forall \mu \in \mathcal{M}_{\mathrm{erg}}(\mathcal{B}^{\mathbb{Z}}) \qquad \mathrm{supp}(\mu) = \mathcal{B}^{\mathbb{Z}} \implies F^{n}\mu \underset{n \to \infty}{\longrightarrow} \nu$$

Theorem of realization (Hellouin-S.-14)

Let $\nu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ be limit-computable, there exists $F : \mathcal{B}^{\mathbb{Z}} \to \mathcal{B}^{\mathbb{Z}}$ with $\mathcal{A} \subset \mathcal{B}$

$$\forall \mu \in \mathcal{M}_{\mathrm{erg}}(\mathcal{B}^{\mathbb{Z}}) \qquad \mathrm{supp}(\mu) = \mathcal{B}^{\mathbb{Z}} \implies F^{n}\mu \underset{n \to \infty}{\longrightarrow} \nu$$

Keys of the construction:

u limit-computable \iff There exists a recursive sequence of words $(w_k)_{k\in\mathbb{N}}$ such that $\widehat{\delta}_{w_k} \underset{k\to\infty}{\longrightarrow} \nu$.

where
$$\widehat{\delta}_{w_k} = \frac{1}{|w_k|} \sum_{i=0}^{|w_k|-1} \delta_{\sigma^i(\infty w_k^{\infty})}$$

Aim

We want to construct a cellular automaton which, starting from a μ -random configuration, generates successively $({}^{\infty}w_i^{\infty})_{i\in\mathbb{N}}$.

Theorem of realization (Hellouin-S.-14)

Let $\nu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ be limit-computable, there exists $F : \mathcal{B}^{\mathbb{Z}} \to \mathcal{B}^{\mathbb{Z}}$ with $\mathcal{A} \subset \mathcal{B}$

$$\forall \, \mu \in \mathcal{M}_{\mathrm{erg}}(\mathcal{B}^{\mathbb{Z}}) \qquad \mathrm{supp}(\mu) = \mathcal{B}^{\mathbb{Z}} \quad \Longrightarrow \quad F^n \mu \underset{n \to \infty}{\longrightarrow} \nu$$

Keys of the construction:

Formatting by absolute time counters

- No transition rule produces the states T
- I produces a time counter on the left and a sweeping counter on the right.

Theorem of realization (Hellouin-S.-14)

Let $\nu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ be limit-computable, there exists $F : \mathcal{B}^{\mathbb{Z}} \to \mathcal{B}^{\mathbb{Z}}$ with $\mathcal{A} \subset \mathcal{B}$

$$\forall \mu \in \mathcal{M}_{\mathrm{erg}}(\mathcal{B}^{\mathbb{Z}}) \qquad \mathrm{supp}(\mu) = \mathcal{B}^{\mathbb{Z}} \implies F^{n}\mu \underset{n \to \infty}{\longrightarrow} \nu$$

Keys of the construction:

Formatting by absolute time counters

• During a collision, if the sweeping counter is older then it is deleted.

Theorem of realization (Hellouin-S.-14)

Let $\nu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ be limit-computable, there exists $F : \mathcal{B}^{\mathbb{Z}} \to \mathcal{B}^{\mathbb{Z}}$ with $\mathcal{A} \subset \mathcal{B}$

$$\forall \, \mu \in \mathcal{M}_{\mathrm{erg}}(\mathcal{B}^{\mathbb{Z}}) \qquad \mathrm{supp}(\mu) = \mathcal{B}^{\mathbb{Z}} \quad \Longrightarrow \quad \mathcal{F}^{n}\mu \underset{n \to \infty}{\longrightarrow} \nu$$

Keys of the construction:

Formatting by absolute time counters

• During a collision, if the time counter is strictly older then it is deleted.

Theorem of realization (Hellouin-S.-14)

Let $\nu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ be limit-computable, there exists $F : \mathcal{B}^{\mathbb{Z}} \to \mathcal{B}^{\mathbb{Z}}$ with $\mathcal{A} \subset \mathcal{B}$

$$\forall \, \mu \in \mathcal{M}_{\mathrm{erg}}(\mathcal{B}^{\mathbb{Z}}) \qquad \mathrm{supp}(\mu) = \mathcal{B}^{\mathbb{Z}} \quad \Longrightarrow \quad F^n \mu \underset{n \to \infty}{\longrightarrow} \nu$$

Keys of the construction:

Formatting by absolute time counters

• States T that are too close are deleted.

Theorem of realization (Hellouin-S.-14)

Let $\nu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ be limit-computable, there exists $F : \mathcal{B}^{\mathbb{Z}} \to \mathcal{B}^{\mathbb{Z}}$ with $\mathcal{A} \subset \mathcal{B}$

$$\forall \, \mu \in \mathcal{M}_{\mathrm{erg}}(\mathcal{B}^{\mathbb{Z}}) \qquad \mathrm{supp}(\mu) = \mathcal{B}^{\mathbb{Z}} \quad \Longrightarrow \quad F^n \mu \underset{n \to \infty}{\longrightarrow} \nu$$

Keys of the construction:

- Formatting by absolute time counters
- Computation and copy on segments

• Compute the size of the segment k in log(k)-space and allocate a space of size \sqrt{k} for the computation;

Theorem of realization (Hellouin-S.-14)

Let $\nu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ be limit-computable, there exists $F : \mathcal{B}^{\mathbb{Z}} \to \mathcal{B}^{\mathbb{Z}}$ with $\mathcal{A} \subset \mathcal{B}$

$$\forall \, \mu \in \mathcal{M}_{\mathrm{erg}}(\mathcal{B}^{\mathbb{Z}}) \qquad \mathrm{supp}(\mu) = \mathcal{B}^{\mathbb{Z}} \quad \Longrightarrow \quad F^n \mu \underset{n \to \infty}{\longrightarrow} \nu$$

Keys of the construction:

- Formatting by absolute time counters
- 2 Computation and copy on segments

- Compute the size of the segment k in log(k)-space and allocate a space of size \sqrt{k} for the computation;
- Compute w_k ;

Theorem of realization (Hellouin-S.-14)

Let $\nu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ be limit-computable, there exists $F : \mathcal{B}^{\mathbb{Z}} \to \mathcal{B}^{\mathbb{Z}}$ with $\mathcal{A} \subset \mathcal{B}$

$$\forall \, \mu \in \mathcal{M}_{\mathrm{erg}}(\mathcal{B}^{\mathbb{Z}}) \qquad \mathrm{supp}(\mu) = \mathcal{B}^{\mathbb{Z}} \quad \Longrightarrow \quad F^n \mu \underset{n \to \infty}{\longrightarrow} \nu$$

Keys of the construction:

- Formatting by absolute time counters
- Computation and copy on segments

- Compute the size of the segment k in log(k)-space and allocate a space of size \sqrt{k} for the computation;
- Compute w_k ;
- Copy periodically the word w_k on the segment.

Theorem of realization (Hellouin-S.-14)

Let $\nu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ be limit-computable, there exists $F : \mathcal{B}^{\mathbb{Z}} \to \mathcal{B}^{\mathbb{Z}}$ with $\mathcal{A} \subset \mathcal{B}$

$$\forall \mu \in \mathcal{M}_{erg}(\mathcal{B}^{\mathbb{Z}}) \qquad \operatorname{supp}(\mu) = \mathcal{B}^{\mathbb{Z}} \implies F^n \mu \underset{n \to \infty}{\longrightarrow} \nu$$

Keys of the construction:

- Formatting by absolute time counters
- 2 Computation and copy on segments

- Compute the size of the segment k in log(k)-space and allocate a space of size \sqrt{k} for the computation;
- Compute w_k;
- Copy periodically the word w_k on the segment.

$$d^{t}(u) \in \left[\min(d_{\text{begin}}(u), d_{\text{end}}(u)) - \frac{2\sqrt{k}}{k}; \max(d_{\text{begin}}(u), d_{\text{end}}(u)) + \frac{2\sqrt{k}}{k}\right]$$
$$\left|d_{\text{end}}(u) - \widehat{\delta_{w_k}}([u])\right| \leq \frac{\sqrt{k}}{k}$$

Theorem of realization (Hellouin-S.-14)

Let $\nu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ be limit-computable, there exists $F : \mathcal{B}^{\mathbb{Z}} \to \mathcal{B}^{\mathbb{Z}}$ with $\mathcal{A} \subset \mathcal{B}$

$$\forall \mu \in \mathcal{M}_{erg}(\mathcal{B}^{\mathbb{Z}}) \qquad \operatorname{supp}(\mu) = \mathcal{B}^{\mathbb{Z}} \implies F^{n}\mu \underset{n \to \infty}{\longrightarrow} \nu$$

Keys of the construction:

- Formatting by absolute time counters
- 2 Computation and copy on segments
- Merging of two segments

 Walls must disappear progressively in order to enlarge the computation zones and ensure that:

$$\mu \in \mathcal{M}^{\mathrm{full}}_{\mathrm{erg}}(\mathcal{B}^{\mathbb{Z}}) \implies F^n \mu([\bullet]) \xrightarrow{n \to \infty} 0$$

Theorem of realization (Hellouin-S.-14)

Let $\nu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ be limit-computable, there exists $F : \mathcal{B}^{\mathbb{Z}} \to \mathcal{B}^{\mathbb{Z}}$ with $\mathcal{A} \subset \mathcal{B}$

$$\forall \mu \in \mathcal{M}_{erg}(\mathcal{B}^{\mathbb{Z}}) \qquad \operatorname{supp}(\mu) = \mathcal{B}^{\mathbb{Z}} \implies F^{n}\mu \underset{n \to \infty}{\longrightarrow} \nu$$

Keys of the construction:

For $u \in \mathcal{A}^*$ and $\epsilon > 0$, one has:

- $\exists K \in \mathbb{N}$ such that $\forall k \geq K$, $|\widehat{\delta_{w_{\varphi(k)}}}([u]) \nu([u])| < \epsilon$;
- $W_K(x) \subset \mathbb{Z}$: set of cells in segments larger than K. $\exists N \in \mathbb{N}, \ \forall n \geq N$, one has $d(W_K(x)) > 1 - \epsilon \ \forall_{F^n_{\mu}} x$;
- Let $r \in \operatorname{Conv}((\widehat{\delta_{w_{\varphi(i)}}}([u]))_{i \geq k})$. For enough large n, one has:

$$|F^n \mu([u]) - \nu([u])| \le |F^n \mu([u]) - r| + |r - \nu([u])|$$

$$\leq \epsilon + \frac{4\sqrt{k}}{k} + \epsilon$$

Thus
$$F^n \mu([u]) \xrightarrow[n \to \infty]{} \nu([u])$$

Which set of measures can be obtained asymptotically?

- A computable metric space is a triple (X, d, S), where
 - (X, d) is a compact metric space;
 - ▶ $S = \{s_i : i \in \mathbb{N}\}$ dense with $(i,j) \mapsto d(s_i, s_j)$ uniformly computable.

- A computable metric space is a triple (X, d, S), where
 - (X, d) is a compact metric space;
 - $S = \{s_i : i \in \mathbb{N}\}\$ dense with $(i,j) \mapsto d(s_i,s_j)$ uniformly computable.

• Example:

•
$$X = [0,1]^d$$
, $S = \mathbb{Q}^d \cap [0,1]^d$ and $d(x,y) = \max_i |x_i - y_i|$

- A computable metric space is a triple (X, d, S), where
 - (X, d) is a compact metric space;
 - ▶ $S = \{s_i : i \in \mathbb{N}\}$ dense with $(i,j) \mapsto d(s_i,s_j)$ uniformly computable.

• Examples:

$$X = [0,1]^d$$
, $S = \mathbb{Q}^d \cap [0,1]^d$ and $d(x,y) = \max_i |x_i - y_i|$

$$X = \mathcal{M}_{\sigma}(A^{\mathbb{Z}}), S = \left\{ \widehat{\delta_{w}} : w \in A^{*} \right\}, d_{\mathcal{M}}(\mu, \nu) = \sum_{n \in \mathbb{N}} \frac{1}{2^{n}} \max_{u \in A^{n}} |\mu([u]) - \nu([u])|$$

with
$$\widehat{\delta_w} = \frac{1}{|w|} \sum_{i \in [0, |w|-1]} \delta_{\sigma^i(\infty_w^\infty)}$$
.

- A computable metric space is a triple (X, d, S), where
 - (X, d) is a compact metric space;
 - ▶ $S = \{s_i : i \in \mathbb{N}\}$ dense with $(i,j) \mapsto d(s_i,s_j)$ uniformly computable.

• Examples:

- $X = [0,1]^d$, $S = \mathbb{Q}^d \cap [0,1]^d$ and $d(x,y) = \max_i |x_i y_i|$
- $X = \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}}), \ \mathcal{S} = \{\widehat{\delta_{w}} : w \in \mathcal{A}^{*}\}, \ d_{\mathcal{M}}(\mu, \nu) = \sum_{n \in \mathbb{N}} \frac{1}{2^{n}} \max_{u \in \mathcal{A}^{n}} |\mu([u]) \nu([u])|$

with
$$\widehat{\delta_w} = \frac{1}{|w|} \sum_{i \in [0, |w|-1]} \delta_{\sigma^i(^\infty w^\infty)}.$$

- Notion of computability on X:
 - $x \in X$ is *computable* iff $\exists \alpha : \mathbb{N} \longrightarrow \mathbb{N}$ computable such that $d(x, s_{\alpha(n)}) \leq 2^{-n}$.
 - $x \in X$ is *limit-computable* iff $\exists \alpha : \mathbb{N} \longrightarrow \mathbb{N}$ computable such that

$$d(x, s_{\alpha(n)}) \xrightarrow[n\to\infty]{} 0.$$

- A computable metric space is a triple (X, d, S), where
 - (X, d) is a compact metric space;
 - ▶ $S = \{s_i : i \in \mathbb{N}\}$ dense with $(i,j) \mapsto d(s_i,s_j)$ uniformly computable.
- Examples:
 - $X = [0,1]^d$, $S = \mathbb{Q}^d \cap [0,1]^d$ and $d(x,y) = \max_i |x_i y_i|$
 - $X = \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}}), \ \mathcal{S} = \{\widehat{\delta_{w}} : w \in \mathcal{A}^{*}\}, \ d_{\mathcal{M}}(\mu, \nu) = \sum_{n \in \mathbb{N}} \frac{1}{2^{n}} \max_{u \in \mathcal{A}^{n}} |\mu([u]) \nu([u])|$

with
$$\widehat{\delta_w} = \frac{1}{|w|} \sum_{i \in [0, |w|-1]} \delta_{\sigma^i(\infty_w \infty)}$$
.

- Notion of computability on *X*:
 - $x \in X$ is *computable* iff $\exists \alpha : \mathbb{N} \longmapsto \mathbb{N}$ computable such that $d(x, s_{\alpha(n)}) \leq 2^{-n}$.
 - $x \in X$ is *limit-computable* iff $\exists \alpha : \mathbb{N} \longmapsto \mathbb{N}$ computable such that

$$d(x, s_{\alpha(n)}) \xrightarrow[n \to \infty]{} 0.$$

• A closed set V is Π_1 -computable iff

$$\left\{(i,n)\in\mathbb{N}^2:\overline{B(s_i,2^{-n})}\cap\mathcal{V}\neq\varnothing\right\}\text{ is }\Pi_1\text{-computable}$$

• Π_1 -computable if $\mathbf{1}_A(n) = \inf_{i_1} \alpha(i_1, n)$ where $\alpha : \mathbb{N}^2 \to \{0, 1\}$ computable.

 $A_{\text{NoHalt}} = \{n : \text{the } n^{\text{th}} \text{ Turing machine does not halt on the empty entry}\}$

- A computable metric space is a triple (X, d, S), where
 - (X, d) is a compact metric space;
 - ▶ $S = \{s_i : i \in \mathbb{N}\}$ dense with $(i,j) \mapsto d(s_i,s_j)$ uniformly computable.
- Examples:
 - $X = [0,1]^d$, $S = \mathbb{Q}^d \cap [0,1]^d$ and $d(x,y) = \max_i |x_i y_i|$
 - $X = \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}}), \ S = \{\widehat{\delta_w} : w \in \mathcal{A}^*\}, \ d_{\mathcal{M}}(\mu, \nu) = \sum_{n \in \mathbb{N}} \frac{1}{2^n} \max_{u \in \mathcal{A}^n} |\mu([u]) \nu([u])|$

with
$$\widehat{\delta_w} = \frac{1}{|w|} \sum_{i \in [0, |w|-1]} \delta_{\sigma^i(\infty_w \infty)}$$
.

- Notion of computability on X:
 - $x \in X$ is *computable* iff $\exists \alpha : \mathbb{N} \longrightarrow \mathbb{N}$ computable such that $d(x, s_{\alpha(n)}) \leq 2^{-n}$.
 - $x \in X$ is *limit-computable* iff $\exists \alpha : \mathbb{N} \longmapsto \mathbb{N}$ computable such that

$$d(x, s_{\alpha(n)}) \xrightarrow[n \to \infty]{} 0.$$

• A closed set V is Π_2 -computable iff

$$\left\{(i,n)\in\mathbb{N}^2:\overline{B(s_i,2^{-n})}\cap\mathcal{V}\neq\varnothing\right\}\text{ is }\Pi_2\text{-computable}$$

▶ Π_2 -computable if $\mathbf{1}_A(n) = \inf_{i_1} \sup_{i_2} \alpha(i_1, i_2, n)$ where $\alpha : \mathbb{N}^3 \to \{0, 1\}$ comp.

 $A_{\text{Tot}} = \{n : \text{the } n^{\text{th}} \text{ Turing machine halts on every entry}\}$

Let $\mu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ and consider

- $\mathcal{V}(F,\mu)$: set of cluster points of the sequence $(F^n\mu)_{n\in\mathbb{N}}$,
- $\mathcal{V}'(F,\mu)$: set of cluster points of the sequence $\left(\frac{1}{n}\sum_{k=0}^{n-1}F^k\mu\right)_{n\in\mathbb{N}}$.

Let $\mu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ and consider

- $\mathcal{V}(F,\mu)$: set of cluster points of the sequence $(F^n\mu)_{n\in\mathbb{N}}$,
- $\mathcal{V}'(F,\mu)$: set of cluster points of the sequence $\left(\frac{1}{n}\sum_{k=0}^{n-1}F^k\mu\right)_{n\in\mathbb{N}}$.

Topological obstructions: $\mathcal{V}(F,\mu)$ and $\mathcal{V}'(F,\mu)$ are comact $\mathcal{V}'(F,\mu)$ is connected

Let $\mu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ and consider

- $\mathcal{V}(F,\mu)$: set of cluster points of the sequence $(F^n\mu)_{n\in\mathbb{N}}$,
- $\mathcal{V}'(F,\mu)$: set of cluster points of the sequence $\left(\frac{1}{n}\sum_{k=0}^{n-1}F^k\mu\right)_{n\in\mathbb{N}}$.

Topological obstructions: $\mathcal{V}(F,\mu)$ and $\mathcal{V}'(F,\mu)$ are comact $\mathcal{V}'(F,\mu)$ is connected

Computability obstruction: If $\mu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ computable then $\mathcal{V}(F,\mu)$ and $\mathcal{V}'(F,\mu)$ are Π_2 -computable.

Let $\mu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ and consider

- $\mathcal{V}(F,\mu)$: set of cluster points of the sequence $(F^n\mu)_{n\in\mathbb{N}}$,
- $\mathcal{V}'(F,\mu)$: set of cluster points of the sequence $\left(\frac{1}{n}\sum_{k=0}^{n-1}F^k\mu\right)_{n\in\mathbb{N}}$.

Topological obstructions: $\mathcal{V}(F,\mu)$ and $\mathcal{V}'(F,\mu)$ are comact $\mathcal{V}'(F,\mu)$ is connected

Computability obstruction: If $\mu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ computable then $\mathcal{V}(F,\mu)$ and $\mathcal{V}'(F,\mu)$ are Π_2 -computable.

$$\overline{B(\widehat{\delta_w},r)} \cap \mathcal{V}(F,\mu) \neq \emptyset \iff \forall N, \exists n, \ d(F^n\mu,\widehat{\delta_w}) < r + 2^{-N}$$

$$\iff \inf_{N} \sup_{n} \alpha(N,n) = 1$$

where

 $\alpha(N,n) = \begin{cases} 1 & \text{if the approximation of } d(F^n\mu,\widehat{\delta_w}) \text{ at } 2^{-N} \text{ is less than } r+2^{-N+1} \\ 0 & \text{otherwise} \end{cases}$

Let $\mu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ and consider

- $\mathcal{V}(F,\mu)$: set of cluster points of the sequence $(F^n\mu)_{n\in\mathbb{N}}$,
- $\mathcal{V}'(F,\mu)$: set of cluster points of the sequence $\left(\frac{1}{n}\sum_{k=0}^{n-1}F^k\mu\right)_{n\in\mathbb{N}}$.

Topological obstructions: $\mathcal{V}(F,\mu)$ and $\mathcal{V}'(F,\mu)$ are comact $\mathcal{V}'(F,\mu)$ is connected

Computability obstruction: If $\mu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ computable then $\mathcal{V}(F,\mu)$ and $\mathcal{V}'(F,\mu)$ are Π_2 -computable.

Proposition

If $\mathcal{V} \subset \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ is compact, connected and Π_2 -computable then there exists a computable sequence $(w_n)_{n \in \mathbb{N}}$ such that

$$\mathcal{V} = \bigcap_{n \in \mathbb{N}} \operatorname{Adh} \left(\bigcup_{i \geq n} \left[\widehat{\delta_{w_i}}, \widehat{\delta_{w_{i+1}}} \right] \right)$$

where $\left[\widehat{\delta_u}, \widehat{\delta_v}\right] = \left\{ (1-t)\widehat{\delta_u} + t\widehat{\delta_v} : t \in [0,1] \right\}$ for all $u, v \in \mathcal{A}^*$.

Theorem of realization (Hellouin-S.-14)

Let $\nu \in \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ be limit-computable, there exists $F : \mathcal{B}^{\mathbb{Z}} \to \mathcal{B}^{\mathbb{Z}}$ with $\mathcal{A} \subset \mathcal{B}$

$$\forall \, \mu \in \mathcal{M}_{\mathrm{erg}}(\mathcal{B}^{\mathbb{Z}}) \qquad \mathrm{supp}(\mu) = \mathcal{B}^{\mathbb{Z}} \quad \Longrightarrow \quad F^n \mu \underset{n \to \infty}{\longrightarrow} \nu$$

Keys of the construction:

- Formatting by absolute time counters
- 2 Computation and copy on segments
- Merging of two segments

Let $(w_i)_{i\in\mathbb{N}}$ be a recursive sequence of words, it is difficult to control the set of adherence value generated by the segments of different sizes.

Theorem of realization (Hellouin-S.-14)

Let $(w_i)_{i\in\mathbb{N}}$ be recursive sequence of \mathcal{A}^* , there exists $F:\mathcal{B}^{\mathbb{Z}}\to\mathcal{B}^{\mathbb{Z}}$ with $\mathcal{A}\subset\mathcal{B}$

$$\forall \ \mu \in \mathcal{M}_{\psi-\mathrm{mix}}^{\mathrm{full}}(\mathcal{A}^{\mathbb{Z}}) \qquad \mathrm{supp}(\mu) = \mathcal{B}^{\mathbb{Z}} \quad \Longrightarrow \quad \mathcal{V}(F,\mu) = \bigcap_{n \in \mathbb{N}} \mathrm{Adh}\left(\bigcup_{i \geq n} \left[\widehat{\delta_{w_i}}, \widehat{\delta_{w_{i+1}}}\right]\right)$$

Keys of the construction:

- Formatting by absolute time counters
- 2 Computation and copy on segments
- Synchronous merging process

For $t \in [T_n, T_{n+1}]$ one has

$$F^t\mu\in [\widehat{\delta_{w_{\pmb{n}}}},\widehat{\delta_{w_{\pmb{n}+\pmb{1}}}}]$$

Theorem of realization (Hellouin-S.-14)

Let $(w_i)_{i\in\mathbb{N}}$ be recursive sequence of \mathcal{A}^* , there exists $F:\mathcal{B}^{\mathbb{Z}}\to\mathcal{B}^{\mathbb{Z}}$ with $\mathcal{A}\subset\mathcal{B}$

$$\forall \ \mu \in \mathcal{M}_{\psi-\mathrm{mix}}^{\mathrm{full}}(\mathcal{A}^{\mathbb{Z}}) \qquad \mathrm{supp}(\mu) = \mathcal{B}^{\mathbb{Z}} \quad \Longrightarrow \quad \mathcal{V}(F,\mu) = \bigcap_{n \in \mathbb{N}} \mathrm{Adh}\left(\bigcup_{i \geq n} \left[\widehat{\delta_{w_i}}, \widehat{\delta_{w_{i+1}}}\right]\right)$$

Keys of the construction:

- Formatting by absolute time counters
- 2 Computation and copy on segments
- Synchronous merging process

For $t \in [T_n, T_{n+1}]$ one has

$$F^t\mu\in \big[\widehat{\delta_{w_{\pmb{n}}}},\widehat{\delta_{w_{\pmb{n}+\pmb{1}}}}\big]$$

If at time t the segments between two \blacksquare are not so long.

Theorem of realization (Hellouin-S.-14)

Let $(w_i)_{i\in\mathbb{N}}$ be recursive sequence of \mathcal{A}^* , there exists $F:\mathcal{B}^{\mathbb{Z}}\to\mathcal{B}^{\mathbb{Z}}$ with $\mathcal{A}\subset\mathcal{B}$

$$\forall \ \mu \in \mathcal{M}_{\psi-\mathrm{mix}}^{\mathrm{full}}(\mathcal{A}^{\mathbb{Z}}) \qquad \mathrm{supp}(\mu) = \mathcal{B}^{\mathbb{Z}} \quad \Longrightarrow \quad \mathcal{V}(F,\mu) = \bigcap_{n \in \mathbb{N}} \mathrm{Adh}\left(\bigcup_{i \geq n} \left[\widehat{\delta_{w_i}}, \widehat{\delta_{w_{i+1}}}\right]\right)$$

Keys of the construction:

- Formatting by absolute time counters
- 2 Computation and copy on segments
- Synchronous merging process

For $t \in [T_n, T_{n+1}]$ one has

$$F^t\mu\in [\widehat{\delta_{w_{\pmb{n}}}},\widehat{\delta_{w_{\pmb{n}+\pmb{1}}}}]$$

If at time t the segments between two \blacksquare are not so long.

This happens if $\mu \in \mathcal{M}^{\mathrm{full}}_{\psi-\mathrm{mix}}(\mathcal{A}^{\mathbb{Z}})$

Theorem of realization (Hellouin-S.-14)

Let $(w_i)_{i\in\mathbb{N}}$ be recursive sequence of \mathcal{A}^* , there exists $F:\mathcal{B}^{\mathbb{Z}}\to\mathcal{B}^{\mathbb{Z}}$ with $\mathcal{A}\subset\mathcal{B}$

$$\forall \, \mu \in \mathcal{M}_{\psi-\text{mix}}^{\text{full}}(\mathcal{A}^{\mathbb{Z}}) \qquad \text{supp}(\mu) = \mathcal{B}^{\mathbb{Z}} \implies \mathcal{V}(F, \mu) = \bigcap_{n \in \mathbb{N}} \text{Adh}\left(\bigcup_{i \geq n} \left[\widehat{\delta_{w_i}}, \widehat{\delta_{w_{i+1}}}\right]\right)$$

Corollary (Hellouin-S.-14)

- $\mathcal{V}(F,\mu)$: set of cluster points of the sequence $(F^n\mu)_{n\in\mathbb{N}}$,
- $\mathcal{V}'(F,\mu)$: set of cluster points of the sequence $\left(\frac{1}{n}\sum_{k=0}^{n-1}F^k\mu\right)_{n\in\mathbb{N}}$.

Let $\mathcal{V},\mathcal{V}'\subset\mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ be compact, connected and Π_2 -computable sets such that $\mathcal{V}'\subset\mathcal{V}$. There exists $(\mathcal{B}^{\mathbb{Z}},F)$ such that for all $\mu\in\mathcal{M}^{\mathrm{full}}_{\psi-\mathrm{mix}}(\mathcal{B}^{\mathbb{Z}})$ one has:

$$\mathcal{V}(F,\mu) = \mathcal{V}$$
 and $\mathcal{V}'(F,\mu) = \mathcal{V}'$.

• What happens for multidimensional CA?

• What happens for multidimensional CA? (Ask Hellouin and Delacourt)

Some related questions

- What happens for multidimensional CA? (Ask Hellouin and Delacourt)
- What is the speed of convergence?

- What happens for multidimensional CA? (Ask Hellouin and Delacourt)
- What is the speed of convergence? (Ask Hellouin)

Speed of convergence

Let $(w_n)_{n\in\mathbb{N}}$ be a sequence of words on \mathcal{A} computable in $O(\sqrt{n})$.

There exists
$$F: \mathcal{B}^{\mathbb{Z}} \to \mathcal{B}^{\mathbb{Z}}$$
 with $\mathcal{A} \subset \mathcal{B}$ such that

$$d(F^{t}\mu, \mathcal{V}((w_{n})_{n\in\mathbb{N}})) = O\left(\frac{1}{\log(t)}\right) + \sup\left\{d_{\mathcal{M}}(\nu, \mathcal{V}((w_{n})_{n\in\mathbb{N}})) : \nu \in \bigcup_{n\geq C(\log t)^{2}} [\widehat{\delta_{w_{n}}}, \widehat{\delta_{w_{n+1}}}]\right\}$$

where

$$\mathcal{V}((w_n)_{n\in\mathbb{N}})=\bigcap_{N>0}\overline{\bigcup_{n\geq N}\left[\widehat{\delta_{w_n}},\widehat{\delta_{w_{n+1}}}\right]}.$$

It is possible to improve the speed of convergence?

- What happens for multidimensional CA? (Ask Hellouin and Delacourt)
- What is the speed of convergence? (Ask Hellouin)
- What happens for set of adherence value?

- What happens for multidimensional CA? (Ask Hellouin and Delacourt)
- What is the speed of convergence? (Ask Hellouin)
- What happens for set of adherence value?
- $\mathcal{V}(F,\mu)$: set of cluster points of the sequence $(F^n\mu)_{n\in\mathbb{N}}$,
- $\mathcal{V}'(F,\mu)$: set of cluster points of the sequence $\left(\frac{1}{n}\sum_{k=0}^{n-1}F^k\mu\right)_{n\in\mathbb{N}}$.

Characterization of the set of limit points (Hellouin & S.)

Let $\mathcal{V}' \subset \mathcal{V} \subset \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ be connected Π_2 -computable compact sets.

There exists $F: \mathcal{B}^{\mathbb{Z}} \to \mathcal{B}^{\mathbb{Z}}$ with $\mathcal{A} \subset \mathcal{B}$ such that

$$\forall \mu \in \mathcal{M}_{\psi-\mathrm{mix}}^{\mathrm{full}}(\mathcal{B}^{\mathbb{Z}}), \quad \mathcal{V}(F,\mu) = \mathcal{V} \text{ and } \mathcal{V}'(F,\mu) = \mathcal{V}'.$$

Rice Theorem (Hellouin & S.)

Any non-trivial property on asymptotic set of measures is undecidable.

- What happens for multidimensional CA? (Ask Hellouin and Delacourt)
- What is the speed of convergence? (Ask Hellouin)
- What happens for set of adherence value?
- What happens if we forbid additional letters?

- What happens for multidimensional CA? (Ask Hellouin and Delacourt)
- What is the speed of convergence? (Ask Hellouin)
- What happens for set of adherence value?
- What happens if we forbid additional letters?

Theorem (Hellouin & S.)

Let $u \in \mathcal{A}^*$ be a word that does not appear in the support of $\mathcal{V} \subset \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$. There is a CA $F : \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ such that

$$\forall \, \mu \in \mathcal{M}_{\psi-\mathrm{mix}}^{\mathrm{full}}(\mathcal{A}^{\mathbb{Z}}), \quad \mathcal{V}(F,\mu) = \mathcal{V}.$$

But if $F: \mathcal{A}^{\mathbb{Z}} \longrightarrow \mathcal{A}^{\mathbb{Z}}$ is surjective, we have additional obstructions:

- $F\lambda_{A^{\mathbb{Z}}} = \lambda_{A^{\mathbb{Z}}}$ (Hedlund-1969);
- $h_{F\mu}(\sigma) = h_{\mu}(\sigma)$ (Kari-Taati-2014) so $\mathcal{V}(F,\mu) \subset \{\nu : h_{\nu}(\sigma) \ge h_{\mu}(\sigma)\}.$

- What happens for multidimensional CA? (Ask Hellouin and Delacourt)
- What is the speed of convergence? (Ask Hellouin)
- What happens for set of adherence value?
- What happens if we forbid additional letters?
- Dependance on the initial measure (i.e. computation on the set of measures).

- What happens for multidimensional CA? (Ask Hellouin and Delacourt)
- What is the speed of convergence? (Ask Hellouin)
- What happens for set of adherence value?
- What happens if we forbid additional letters?
- Dependance on the initial measure (i.e. computation on the set of measures).

An operator $\varphi: \mathcal{M} \longrightarrow \mathcal{M}'$ is *limit computable* if there exists $f: \mathcal{M} \times \mathcal{A}^* \times \mathbb{N} \to \mathbb{Q}$ a computable function with oracle such that $f(\mu, u, n) \underset{n \to \infty}{\longrightarrow} \varphi(\mu)([u])$.

Computability obstruction: If $(F^n\mu)_n$ converges for all $\mu \in \mathcal{M}_{\sigma} \subset \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ $\mu \mapsto \lim_{n \to \infty} F^n\mu$ is a limit-computable operator.

- What happens for multidimensional CA? (Ask Hellouin and Delacourt)
- What is the speed of convergence? (Ask Hellouin)
- What happens for set of adherence value?
- What happens if we forbid additional letters?
- Dependance on the initial measure (i.e. computation on the set of measures).

An operator $\varphi: \mathcal{M} \longrightarrow \mathcal{M}'$ is *limit computable* if there exists $f: \mathcal{M} \times \mathcal{A}^* \times \mathbb{N} \to \mathbb{Q}$ a computable function with oracle such that $f(\mu, u, n) \xrightarrow[n \to \infty]{} \varphi(\mu)([u])$.

Computability obstruction: If $(F^n\mu)_n$ converges for all $\mu \in \mathcal{M}_{\sigma} \subset \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ $\mu \mapsto \lim_{n \to \infty} F^n\mu$ is a limit-computable operator.

Theorem (Hellouin & S.)

Let $\varphi: \mathcal{M}_{\psi-\exp}(\{0,1\}^{\mathbb{Z}}) \longrightarrow \mathcal{M}_{\sigma}(\mathcal{A}^{\mathbb{Z}})$ be a limit computable operator, there exists a cellular automaton $(\mathcal{B}^{\mathbb{Z}}, F)$ and a factor $\pi: \mathcal{B} \longrightarrow \{0,1\}$ such that $\mathcal{V}(F, \mu) = \{\varphi(\pi\mu)\}$ for all $\mu \in \mathcal{M}_{\psi-\exp}(\mathcal{B}^{\mathbb{Z}})$ of full support.

- What happens for multidimensional CA? (Ask Hellouin and Delacourt)
- What is the speed of convergence? (Ask Hellouin)
- What happens for set of adherence value?
- What happens if we forbid additional letters?
- Dependance on the initial measure (i.e. computation on the set of measures).
- Connexion between dynamic and algorithmic properties of the limit measures?

- What happens for multidimensional CA? (Ask Hellouin and Delacourt)
- What is the speed of convergence? (Ask Hellouin)
- What happens for set of adherence value?
- What happens if we forbid additional letters?
- Dependance on the initial measure (i.e. computation on the set of measures).
- Connexion between dynamic and algorithmic properties of the limit measures?
- Robustness of the construction for some mistakes.

- What happens for multidimensional CA? (Ask Hellouin and Delacourt)
- What is the speed of convergence? (Ask Hellouin)
- What happens for set of adherence value?
- What happens if we forbid additional letters?
- Dependance on the initial measure (i.e. computation on the set of measures).
- Connexion between dynamic and algorithmic properties of the limit measures?
- Robustness of the construction for some mistakes.

Perturbation of a cellular automaton F by a random noise R_ϵ

Limit measures are conjectured algorithmically simple. Some idea in this sense:

- Studies for the transformation of the interval (Braverman-Grigo-Rojas-2013);
- It is true for large class of exemples (*Marcovici-S.-Taati-2016*) for exemple:

If
$$F$$
 is surjective, $(R_{\epsilon} \circ F)^n \mu \xrightarrow[n \to \infty]{} \lambda_{\mathcal{A}^{\mathbb{Z}}}$.

- What happens for multidimensional CA? (Ask Hellouin and Delacourt)
- What is the speed of convergence? (Ask Hellouin)
- What happens for set of adherence value?
- What happens if we forbid additional letters?
- Dependance on the initial measure (i.e. computation on the set of measures).
- Connexion between dynamic and algorithmic properties of the limit measures?
- Robustness of the construction for some mistakes.
- When appears emergence?

• Asymptotic Randomization

$$\frac{1}{n}\sum_{k=0}^{n-1}F^k\mu \underset{n\to\infty}{\longrightarrow} \lambda_{\mathcal{A}^{\mathbb{Z}}}$$

• Emergent Defect Dynamics

When iterating the automaton on a random configuration, defects in only one direction remain asymptotically.

• Asymptotic Randomization

- Randomization results
- Lind-84 shows that $((\mathbb{Z}/2\mathbb{Z})^{\mathbb{Z}}, \mathrm{Id} + \sigma)$ randomizes Bernoulli measures
- Randomization for large classes of Algebraic CA and initial measures.
 Two approaches:
- stochastic processes *Ferrari-Maass-Martínez-Ney-00*
 - Harmonic analysis Pivato-Yassawi-02

• Asymptotic Randomization

$$\frac{1}{n}\sum_{k=0}^{n-1}F^k\mu \xrightarrow{n\to\infty} \lambda_{\mathcal{A}^{\mathbb{Z}}}$$

- Randomization results
- Rigidity results
- ▶ Links with *Furstenberg*'s problem: Which measures of [0,1] are (\times_2,\times_3) -invariant?

Asymptotic Randomization

$$\frac{1}{n}\sum_{k=0}^{n-1}F^k\mu \xrightarrow{n\to\infty} \lambda_{\mathcal{A}^{\mathbb{Z}}}$$

- Randomization results
- Rigidity results
- Links with Furstenberg's problem: Which measures of [0,1] are (\times_2,\times_3) -invariant? ▶ $F: A^{\mathbb{Z}} \to A^{\mathbb{Z}}$ algebraic, μ (F, σ) -invariant, ergodicity properties on μ and $h_{\mu}(\sigma) > 0$ $\implies \mu = \lambda_{A^{\mathbb{Z}}}$ (Host-Maass-Martinez-03,

• Asymptotic Randomization

$$\frac{1}{n}\sum_{k=0}^{n-1}F^k\mu \xrightarrow{n\to\infty} \lambda_{\mathcal{A}^{\mathbb{Z}}}$$

- Randomization results
- Rigidity results
- ▶ Links with *Furstenberg*'s problem: Which measures of [0,1] are (\times_2,\times_3) -invariant? ▶ $F:\mathcal{A}^{\mathbb{Z}}\to\mathcal{A}^{\mathbb{Z}}$ algebraic, μ (F,σ) -invariant, ergodicity properties on μ and $h_{\mu}(\sigma)>0$ $\Longrightarrow \mu=\lambda_{\mathcal{A}^{\mathbb{Z}}}$ (Host-Maass-Martinez-03, Pivato-05, Sablik-07)
- ▶ $F: \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ algebraic, $s: \mathcal{A} \to \mathcal{A}$ permutation, μ ($s \circ F, \sigma$)-invariant, ergodicity properties on μ and $h_{\mu}(\sigma) > 0$ $\implies \mu = \lambda_{\mathcal{A}^{\mathbb{Z}}}$ (Hellouin-Maass-Marcovici-Sablik-13)

• Asymptotic Randomization

$$\frac{1}{n}\sum_{k=0}^{n-1}F^k\mu \xrightarrow[n\to\infty]{} \lambda_{\mathcal{A}^{\mathbb{Z}}}$$

- Randomization results
- Rigidity results
- Empiric approach of randomization

• Asymptotic Randomization

$$\frac{1}{n}\sum_{k=0}^{n-1}F^k\mu \xrightarrow{n\to\infty} \lambda_{\mathcal{A}^{\mathbb{Z}}}$$

- Randomization results
- Rigidity results
- Empiric approach of randomization

Challenging question

Prove randomization or rigidity results for expansive cellular automata.

Captive cellular automaton

 $F: \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ is captive if $F(\mathcal{B}^{\mathbb{Z}}) \subset \mathcal{B}^{\mathbb{Z}}$ for all $\mathcal{B} \subset \mathcal{A}$.

• Emergent Defect Dynamics

When iterating the automaton on a random configuration, defects in only one

direction remain asymptotically.

Captive cellular automaton

 $F: \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ is captive if $F(\mathcal{B}^{\mathbb{Z}}) \subset \mathcal{B}^{\mathbb{Z}}$ for all $\mathcal{B} \subset \mathcal{A}$.

- Qualitative approach:
 - Description of particles as defects (*Pivato*'s approach)

• Emergent Defect Dynamics

When iterating the automaton on a random configuration, defects in only one

direction remain asymptotically.

Homogeneous regions vs defects

Homogeneous regions vs defects

Captive cellular automaton

 $F: \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ is *captive* if $F(\mathcal{B}^{\mathbb{Z}}) \subset \mathcal{B}^{\mathbb{Z}}$ for all $\mathcal{B} \subset \mathcal{A}$.

- Qualitative approach:
 - Description of particles as defects (*Pivato*'s approach)

• Emergent Defect Dynamics
When iterating the automaton on a random configuration, defects in one direction only remain asymptotically.

Captive cellular automaton

 $F: \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ is captive if $F(\mathcal{B}^{\mathbb{Z}}) \subset \mathcal{B}^{\mathbb{Z}}$ for all $\mathcal{B} \subset \mathcal{A}$.

- Qualitative approach:
 - Description of particles as defects (*Pivato*'s approach)
 - Coalescent CA admit asymptotically one speed of particle [HS11]

• Emergent Defect Dynamics
When iterating the automaton on a random configuration, defects in one

Captive cellular automaton

 $F: \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ is captive if $F(\mathcal{B}^{\mathbb{Z}}) \subset \mathcal{B}^{\mathbb{Z}}$ for all $\mathcal{B} \subset \mathcal{A}$.

- Qualitative approach:
 - Description of particles as defects (*Pivato*'s approach)
 - Coalescent CA admit asymptotically one speed of particle [HS11]
- Quantitative approach:
 - "gliders CA": precise description of distribution of particles [HS12]

$$\mu\left(\frac{T_{\mathbf{n}}^{-}(\mathbf{a})}{\mathbf{n}} \leq \mathbf{x}\right) \underset{\mathbf{n} \rightarrow \infty}{\longrightarrow} \frac{2}{\pi} \arctan\left(\sqrt{\frac{-v_{-}\mathbf{x}}{v_{+} - v_{-} + v_{+}\mathbf{x}}}\right)$$

where $T_n^-(x) = \min \left\{ k \in \mathbb{N} \mid F^{k+n}(x)_0 = -1 \right\}$

Principal tool: Brownian motion

Emergent Defect Dynamics

When iterating the automaton on a random configuration, defects in one direction only remain asymptotically.

- What happens for multidimensional CA?
- What is the speed of convergence?
- What happens for set of adherence value?
- What happens if we forbid additional letters?
- Dependance on the initial measure (i.e. computation on the set of measures).
- Connexion between dynamic and algorithmic properties of the limit measures?
- Robustness of the construction for some mistakes.
- When appears emergence?