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Some probabilstic problematics:
@ What are the random initial configurations?
@ What are the generic asymptotic behavior?
@ What is the robustness to random perturbations?
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Cellular Automata

Definition
o A= {0,m} finite alphabet

d 5 0
o A% set of configurations

o F: AV — A Jocal rules

F(x)i = F(x.p) for all x € AZd

Theorem (Hedlund-1969)
(A% F)isa CAiff F: AZ — A% is
continuous and Foo =00 F.

o: A — A%

(Xi)ieZ = (Xi+1)ieZ~

Iﬁﬂ@ﬂﬁﬂ@ﬂﬁﬂ@ﬂﬁﬂﬁﬂ
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Some space-time diagrams
Classification of Wolfram (1982):

Highlighting and studying the propagation of information:

Empirical approach
Algorithmically approach
Dynamical approach

Probabilistic approach
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Some space-time diagrams
Classification of Wolfram (1982):

EREEINE RS P A

Highlighting and studying the propagation of information:

e Empirical approach Limit sets | p-limit sets
ithmi ACF) = Nnen FP(AT) | u ¢ L(AL(F))
o Algorithmically approach gl L NN
@ Dynamical approach n—o0
o Probabilistic approach A(L....‘._Au ) = | M (L......‘A‘. =
{xe AZ:om"O¢ x} {E""E‘”% :i :iEDDw}

Different studies of the limit/u-limit sets: Hurley, Kari, Maass, Kurka, Theyssier...



Some classes of measures: Dynamical properties

o Let M, (A%) be the set of o-invariant probability measures.
Usually M, is endowed with the weak* topology:

pn — v iff  Yue AV one has p,([u]) — v([u]).

M (A%) is convex, compact and metrizable. ¥y, v € M, (AZ) put:

A1) = 3 1 mag((u) - v([uD).

@ u is o-ergodic iff all o-invariant subset B € B, one has u(B) =0 or 1.
Consider u, v € A* and x € A”.
The density of uin v is d, (u) = Card{’e[olt’” |11:|]+vl' itlul-a=U}
The density of uin x is dy(u) =limsup dy_, . (u).
n—oo

We recall that for a o-ergodic measure i one has:

p([u]) = dy(u) for p-almost all x € A”

Problematic Measures 6/ 19



Some classes of measures: Standard examples

0 ifx¢[u]

o Dirac measure: for x € AZ and ue A*, §,([u]) = )
1 if not

@ o-invariant measure supported by a periodic point:

— 1
For we A* 6W =T z 5o-i(oowoo)

W] e

Fact: {g; w e A*} is dense in My (A%)

o Bernoulli measure associated to (p,)aca € [0; 1] such that ¥, 4 pa = 1:

Apa)aca ([U]) = Puy - Pu, for u=up... use A",

@ Markov measure

Problematic Measures



lteration of measures by a cellular automaton
F: M,(AY) — M, (A?)
1 — Fu such that VB €B  Fu(B) = u(F~(B)).
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lteration of measures by a cellular automaton
Fi Mo(A%) — M, (A7)

1 — Fu such that VB €B  Fu(B) = u(F~(B)).
Examples:
If w([@]) >0 then F"y — &g
ol
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lteration of measures by a cellular automaton
Fi Mo(A%) — M, (A7)

L — Fpu such that VB e€B Fu(B) = u(F(B)).
Examples:
If w([@]) >0 then F"y — &g
Y

N
%/\ 5 it () = (D)
Fluy — {veMo({m,a}”) if u([m]) > pu([m])(Ferrari)
N %‘*\\Q\ T v e Mo ({m0}") it p([m]) < pu([m])
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Iteration of measures by a cellular automaton
Fi Mo(A") — M, (A

L — Fpu such that VB e€B Fu(B) = u(F(B)).
Examples:
If w([@]) >0 then F"y — &g
Y

™
% A % it u((w)) = p((m])
/\R //%% Fnu,H—; veM,({mo}?) if u([m]) > p([m])(Ferrari)

ve M, ({m,0)%) if pu([m]) < u([m])

Fru — p[m)og + u[0]éa + p[m]da (Hellouin)

n—oo
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Iteration of measures by a cellular automaton
Fi Mo(A") — M, (A

L — Fpu such that VB e€B Fu(B) = u(F(B)).
Examples:
If w([@]) >0 then F"y — &g
Y

W™
% \ % if p([m]) = p([m])
ZaN /%§ Fp — qve Mo ({m,0}%) if j((m]) > p([m]) (Ferrari)

veMq({mo}") if p([m]) < p([m)

Fru — p[m)og + u[0]éa + p[m]da (Hellouin)

n—oo

Lo Fru v X (Maass-Martinez, Pivato-Yassawi...)

Problematic Some exemples
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Measure obtained asymptotically

o e M,(AZ) is computable if there exists f : A* x N - Q computable such
that

() - £ )] <+

o ue M, (AZ%) is limit-computable if there exists f : A* x N - Q computable
such that

lim £(u,n) = u([u]).
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lpe(l]) = £ Qu,m] < —.

o ue M, (AZ%) is limit-computable if there exists f : A* x N - Q computable
such that

lim £(u,n) = u([u]).

Computability obstruction: 1 € M, (A%) computable and F"y, — v

n—oo

then v is limit-computable.
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Measure obtained asymptotically

o 1 e M, (AZ) is computable if there exists f : A* x N - Q computable such
that

() - £ )] <+

o ue M, (AZ%) is limit-computable if there exists f : A* x N - Q computable
such that

lim £(u,n) = u([u]).

Computability obstruction: 1 € M, (A%) computable and F"y, — v

n—oo

then v is limit-computable.

Theorem of realization (Hellouin-S.-14)

Let v € M,(A”) be limit-computable, there exists F : BZ - B” with A c B

Ve Merg(BZ) Supp(,u) =B = F'u — v

n—oo

Characterization of measure obtained asymptotically Obstruction 10 / 19



Theorem of realization
Theorem of realization (Hellouin-S.-14)

Let v e M,(A”) be limit-computable, there exists F : BZ - B with A c B

Ve Mag(B®)  supp(p) =B =— F'u—v

n—oo

Keys of the construction:

v limit-computable <= There exists a recursive sequence of words

(Wk ) ken such that ng — V.
— 00
. ]_ wy |- 1
where d,, = — i (% e
k (=wpe)
Wil 3 k

Aim

We want to construct a cellular automaton which, starting from a p-random

configuration, generates successively (*w;®), .

Characterization of measure obtained asymptotically Theorem of realization 11 / 19



Theorem of realization
Theorem of realization (Hellouin-S.-14)

Let v e M,(A”) be limit-computable, there exists F : BZ - B with A c B

Ve Mag(B®)  supp(p) =B =— F'u—v

n—oo

Keys of the construction:
@ Formatting by absolute time counters

. of2 ) & & .
. 2]1 . o oo
o 1]2 . 5 oo
. 11 . o ‘e o
. ol2 e . 5
. o1 . oo .
. elo oo e:e
7! AR 1 R 5 5 Ao
/ Asweep

@ No transition rule produces the states [1]

e [1] produces a time counter on the left and a sweeping counter on the right.

Characterization of measure obtained asymptotically Theorem of realization 11 / 19



Theorem of realization
Theorem of realization (Hellouin-S.-14)

Let v e M,(A”) be limit-computable, there exists F : BZ - B with A c B

Ve Mag(B®)  supp(p) =B =— F'u—v

n—oo

Keys of the construction:
© Formatting by absolute time counters

state

timevalue

/]
7|
7l
7|
7|
7|
7|
7|
7|
7|
7|
7l
7|
7l
7|
7
7|
7|
7|
7|
7|
7|
7l
7|

@ During a collision, if the sweeping counter is older then it is deleted.

Characterization of measure obtained asymptotically Theorem of realization 11 / 19



Theorem of realization
Theorem of realization (Hellouin-S.-14)

Let v e M,(A”) be limit-computable, there exists F : BZ - B with A c B

Ve Mag(B®)  supp(p) =B =— F'u—v

n—oo

Keys of the construction:
© Formatting by absolute time counters

= |Golcolcol

=1 lco

=] — $to|

TINNANANNAY

/|
7|
7l
7|
7|
7|
7|
7|
7|
7|
7|
7|
7|
7l
7|
7
7|
7|
7|
7|
7|
7|
7l
7|

@ During a collision, if the time counter is strictly older then it is deleted.

Characterization of measure obtained asymptotically Theorem of realization 11 / 19



Theorem of realization
Theorem of realization (Hellouin-S.-14)

Let v e M,(A”) be limit-computable, there exists F : BZ - B with A c B

Ve Mag(B®)  supp(p) =B =— F'u—v

n—oo
Keys of the construction:
© Formatting by absolute time counters
o States [I] that are too close are deleted.
Characterization of measure obtained asymptotically Theorem of realization




Theorem of realization
Theorem of realization (Hellouin-S.-14)
Let v e M,(A”) be limit-computable, there exists F : BZ - B with A c B

Ve Mag(B®)  supp(p) =B =— F'u—v

n—oo

Keys of the construction:

© Formatting by absolute time counters
@ Computation and copy on segments

End o Compute the size of the segment k in log(k)-space and
allocate a space of size \/k for the computation;

Characterization of measure obtained asymptotically

Theorem of realization
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Theorem of realization
Theorem of realization (Hellouin-S.-14)
Let v e M,(A”) be limit-computable, there exists F : BZ - B with A c B

Ve Mag(B®)  supp(p) =B =— F'u—v

n—oo

Keys of the construction:

© Formatting by absolute time counters
@ Computation and copy on segments

End o Compute the size of the segment k in log(k)-space and

allocate a space of size \/k for the computation;
o Compute wy;

Characterization of measure obtained asymptotically

Theorem of realization
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Theorem of realization
Theorem of realization (Hellouin-S.-14)

Let v e M,(A”) be limit-computable, there exists F : BZ - B with A c B

Ve Mag(B®)  supp(p) =B =— F'u—v

n—oo

Keys of the construction:

© Formatting by absolute time counters
@ Computation and copy on segments

o Compute the size of the segment k in log(k)-space and
- allocate a space of size \/k for the computation;

o Compute wy;

@ Copy periodically the word wy on the segment.

Characterization of measure obtained asymptotically
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Theorem of realization
Theorem of realization (Hellouin-S.-14)

Let v e M,(A”) be limit-computable, there exists F : BZ - B with A c B

Ve Mag(B®)  supp(p) =B =— F'u—v

n—oo

Keys of the construction:

© Formatting by absolute time counters
@ Computation and copy on segments

o Compute the size of the segment k in log(k)-space and
- allocate a space of size \/k for the computation;

o Compute wy;

@ Copy periodically the word wy on the segment.

d*(u) e [mln(dbegm(u) dena (1)) - % max(dbegin(U), dend(u))+£]

< dena (1) — 5o ([])] <
Begin

Characterization of measure obtained asymptotically

~|S
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Theorem of realization
Theorem of realization (Hellouin-S.-14)

Let v e M,(A”) be limit-computable, there exists F : BZ - B with A c B

Ve Mag(B®)  supp(p) =B =— F'u—v

n—oo

Keys of the construction:

© Formatting by absolute time counters
@ Computation and copy on segments
© Merging of two segments

™ P . . .
// o Walls must disappear progressively in order to

N enlarge the computation zones and ensure that:

=

™ full A n

= peMgg(BY) = F'u([m]) —0

~

=

-

Characterization of measure obtained asymptotically Theorem of realization 11 / 19



Theorem of realization
Theorem of realization (Hellouin-S.-14)
Let v € M,(A”) be limit-computable, there exists F : BZ - B with Ac B

Ve Mag(B®)  supp(p) =B =— F'u—v

n—oo

Keys of the construction:

For u e A* and € > 0, one has:
@ 3JK €N such that Vk > K, |5W¢(k)([u]) -v([u])|<e

@ Wk (x) c Z: set of cells in segments larger than K.
|~ INeN, Vn2 N, one has d(Wk(x)) >1—-€ Ven, x

@ Let re Conv((8w,_ wo iy ([U]))isk)-
For enough large n, one has:

[F"u([u]) = v([uD)]

/

IN

IF"u([u]) = rl+|r = v([u])]

a/k
€+ ——+e€

A \/\/\/\/\<

Thus F"u([u]) e v([u])

Characterization of measure obtained asymptotically Theorem of realization 12 / 19



Which set of measures can be obtained
asymptotically?




Some elements of computable analysis

@ A computable metric space is a triple (X,d,S), where
» (X, d) is a compact metric space;
» 8§ ={s;:i e N} dense with (i,j) — d(s;i,s;) uniformly computable.

Which set of measures can be obtained? Computability obstruction 14 / 19
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@ A computable metric space is a triple (X,d,S), where

» (X, d) is a compact metric space;

» 8§ ={s;:i e N} dense with (i,j) — d(s;i,s;) uniformly computable.
o Example:

» X =[0,1], §=Q%n[0,1]¢ and d(x,y) = max; |x; - yil
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Some elements of computable analysis

@ A computable metric space is a triple (X,d,S), where
» (X, d) is a compact metric space;
» 8§ ={s;:i e N} dense with (i,j) — d(s;i,s;) uniformly computable.

o Examples:
» X =10,1)7, 5 Q“ n[o, 1]¢ and d(x,y) = max; |x; - yi|
> X =M, ( ) = {5 we A } dM(p,,l/) ZneN on max|u([ ])_V([u])|

— 1
with 0, = — 0 gi o0 oo -
|wl ie[o,|Zw:\-1] i )
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Some elements of computable analysis

@ A computable metric space is a triple (X,d,S), where
» (X, d) is a compact metric space;
» 8§ ={s;:i e N} dense with (i,j) — d(s;i,s;) uniformly computable.

o Examples:
» X =[0,1]7, S Q? n [0, ] and d(x,y) = max; [x; — yi|
> X =M, ( ) :{6 A*} dM(p,,l/) ZneN on max|p([ ])_V([u])|
— 1
with 0, = — 50.' 00 o) -
Wl e €[0,|w|-1] ( )

@ Notion of computability on X:
» x € X is computable iff 3 o : N +—— N computable such that d(x,s,(n) <27".
» x € X is limit-computable iff 3 o : N — N computable such that

d(X7 Sa(n)) —> 0
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Some elements of computable analysis

@ A computable metric space is a triple (X, d,S), where
» (X,d) is a compact metric space;
» § = {s; : i e N} dense with (i,j) — d(s;i,s;) uniformly computable.
o Examples:
X=[0,1]9, 8 =Q9n[0,1] and d(x,y) = max; |x; — yi|
> X=Mo(A®), S={Bw:we A}, dum(i,v) = T pen 3w max|u([u]) - v([u])]

— 1
with d, = — Z 5Ui(ccwo<7)-
|W‘ ie[0,|lw|-1]

@ Notion of computability on X:
» x € X is computable iff 3 o : N +—— N computable such that d(x,s,(n) <27".
» x € X is limit-computable iff 3 «: N — N computable such that

d(x,Sa(my) - 0.
@ A closed set V is Iy-computable iff
{(i, n) eN?:B(s;,2-") NV # Q} is M;-computable
» Mi-computable if 14(n) = inf;, a(i1, n) where a : N> - {0,1} computable.

Anotal = {n : the n" Turing machine does not halt on the empty entry}

Which set of measures can be obtained? Computability obstruction



Some elements of computable analysis
@ A computable metric space is a triple (X,d,S), where
» (X,d) is a compact metric space;
» 8§ ={s;: i e N} dense with (i,j) — d(si,s;) uniformly computable.
o Examples:
X =0, 1]", §=Q%n [O,I]d and d(x,y) = max; |x; — yi|
L X = Mo(AP), 8 = {8 w e A}, dad(i) = S 2 maxtu([u]) - v([u])]

with g; = — (50,' 00 yo0) -
|w] ;e[o,|zw\-1] ( )

@ Notion of computability on X:
» x € X is computable iff 3 o.: N — N computable such that d(x,s,ny) <27
» x € X is limit-computable iff 3 « : N — N computable such that

d(X7 Sa(n)) —> 0
o A closed set V is My-computable iff
{(i, n)eN?:B(s;,27")nV + @} is Ma-computable

> Ma-computable if 1a(n) = infy, sup;, a(i1, iz, n) where a: N*> > {0,1} comp.

Aot = {n: the nth Turing machine halts on every entry}

Which set of measures can be obtained? Computability obstruction
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@ V(F,u): set of cluster points of the sequence (F") en,

e V'(F,u): set of cluster points of the sequence (% i Fku)neN.
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Computability obstructions
Let 1 € M, (A%) and consider
@ V(F,u): set of cluster points of the sequence (F"1) en,
e V'(F,p): set of cluster points of the sequence (% P Fku)neN.
Topological obstructions:  V(F,u) and V'(F, 1) are comact
V'(F,u) is connected

Computability obstruction: If 1 € M, (A%) computable then
V(F,u) and V'(F,u) are My-computable.

B(S—.;, NnV(F,p)#@ <« VYN, 3n, d(F"u,80) <r+27N
<= infsupa(N,n)=1
N n
where
1 if the approximation of d(F"u, 8y ) at 2~V is less than r+2 - N+1
0 otherwise

a(N,n) = {

Which set of measures can be obtained? Computability obstruction
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Computability obstructions
Let 1€ M, (A%) and consider
@ V(F,u): set of cluster points of the sequence (F") en,

o V'(F,u): set of cluster points of the sequence (% Y F"u)neN.

Topological obstructions:  V(F,u) and V'(F, 1) are comact
V'(F,u) is connected

Computability obstruction: If 1 € M, (A%) computable then
V(F,pn) and V'(F, ) are MNy-computable.
Proposition

If V c M, (A%) is compact, connected and My-computable then there exists a
computable sequence (w,,)nqen such that

V= Adh(U [3;57])

neN i>n

where [57,,5;] = {(1 - t)g; +th, i te [0, 1]} for all u,ve A*.

Which set of measures can be obtained? Computability obstruction



Theorem of realization
Theorem of realization (Hellouin-S.-14)

Let v e M,(A”) be limit-computable, there exists F : BZ - B with A c B

Ve Mag(B®)  supp(p) =B =— F'u—v

n—oo

Keys of the construction:

© Formatting by absolute time counters
@ Computation and copy on segments
© Merging of two segments

/

L

Let (w;)ien be a recursive sequence of words, it
is difficult to control the set of adherence value
generated by the segments of different sizes.

\ \/\/\/\/\<

Which set of measures can be obtained? Theorem of realization



Theorem of realization
Theorem of realization (Hellouin-S.-14)

Let (w;)jen be recursive sequence of A*, there exists F : BZ — B with Ac B

Ve Myl (A" supp(p) =B — V(F,u)=ﬂAdh(U[5’vZ,3va]

—mix
neN i>n

Keys of the construction:

© Formatting by absolute time counters
@ Computation and copy on segments
© Synchronous merging process

For t € [Ty, Ths1] one has

Th+2

Ft:u € [6/‘”\"’6Wn+1]

Thi1

i M/I/L/I/LMM

Which set of measures can be obtained?

Theorem of realization
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Theorem of realization

Theorem of realization (Hellouin-S.-14)

Let (w;)jen be recursive sequence of A*, there exists F : BZ — B with Ac B

—mix

V/J, c Mfull (AZ)

neN i>n

supp(p) = B = V(F,u) =) Adh(U [Ow;

Keys of the construction:

© Formatting by absolute time counters
@ Computation and copy on segments
© Synchronous merging process

For t € [Ty, Ths1] one has

Th+2

Ft:u € [6/‘”\"’6Wn+1]

two m are not so long.
Thi1

LA =

Which set of measures can be obtained?

Theorem of realization

If at time t the segments between
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Theorem of realization
Theorem of realization (Hellouin-S.-14)

Let (w;)jen be recursive sequence of A*, there exists F : BZ — B with Ac B

Ve MR (A")  supp(u) =B" = V(F,u) = Adn|J[0w;,0m., ]

neN i>n

Keys of the construction:

© Formatting by absolute time counters
@ Computation and copy on segments
© Synchronous merging process

For t € [Ty, Ths1] one has

Th+2

Ft:u € [6/‘”\"’6Wn+1]

If at time t the segments between
two m are not so long.
Thi1

/I/IA/I/IA This happens if u € Mfﬂmix(AZ)
"L 11

Which set of measures can be obtained? Theorem of realization



Theorem of realization
Theorem of realization (Hellouin-S.-14)

Let (w;)jen be recursive sequence of A*, there exists F : BZ — B with Ac B

Ve Myl (A" supp(p) =B — V(F,u)=ﬂAdh(U[3;,-,5w,-ﬂ]

neN i>n

Corollary (Hellouin-S.-14)

@ V(F,p): set of cluster points of the sequence (F" ) pen,

e V'(F,u): set of cluster points of the sequence (% ZZ;}J Fku)neN.
Let V, V' c M, (A%) be compact, connected and My-computable sets such that
V' c V. There exists (BZ, F) such that for all g e MM . (BZ) one has:

YP—mix

V(F,p) =V and V'(F,pn)=V".

Which set of measures can be obtained? Theorem of realization
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Some related questions

o What happens for multidimensional CA? (Ask Hellouin and Delacourt)

o What is the speed of convergence? (Ask Hellouin)

Speed of convergence

Let (wn)nen be a sequence of words on A computable in O(y/n).
There exists F : BZ - BZ with A c B such that

(Y (wn)r) = O (t))+sup{dM<uw(Wn>neN)) U o]

n>C(logt)2

where

V((Wn)nett) = () U [Bums Oura )-

N>0 n>N

It is possible to improve the speed of convergence?

Some related questions 18 / 19
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Some related questions

o What happens for multidimensional CA? (Ask Hellouin and Delacourt)
o What is the speed of convergence? (Ask Hellouin)

o What happens for set of adherence value?

V(F,u): set of cluster points of the sequence (F"1) pen,

V'(F, p): set of cluster points of the sequence (2 i Fku)neN.
Characterization of the set of limit points (Hellouin & S.)

Let V' c ¥V c M,(A%) be connected MN,-computable compact sets.
There exists F : BZ — B with A c B such that

Ve Ml (BZ), V(F,pu) =V and V'(F,pu) =V'.

P—mix
”

Rice Theorem (Hellouin & S.)

Any non-trivial property on asymptotic set of measures is undecidable.
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Some related questions

o What happens for multidimensional CA? (Ask Hellouin and Delacourt)
o What is the speed of convergence? (Ask Hellouin)
o What happens for set of adherence value?

o What happens if we forbid additional letters?
Theorem (Hellouin & S.)

Let ue . A* be a word that does not appear in the support of V c M, (A%).
There is a CA F: A” - A” such that

Ve MG (AD), V(F,p)=V.

But if F: A” — A” is surjective, we have additional obstructions:
@ FAz =Xz (Hedlund-1969);
e hg,(o) =h,(o) (Kari-Taati-2014) so V(F,pu) c {v: h,(c) > h,(o)}.

Some related questions 18 / 19



Some related questions

o What happens for multidimensional CA? (Ask Hellouin and Delacourt)
o What is the speed of convergence? (Ask Hellouin)

o What happens for set of adherence value?

What happens if we forbid additional letters?

Dependance on the initial measure (i.e. computation on the set of measures).
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o What happens for multidimensional CA? (Ask Hellouin and Delacourt)
o What is the speed of convergence? (Ask Hellouin)

o What happens for set of adherence value?

o What happens if we forbid additional letters?

o Dependance on the initial measure (i.e. computation on the set of measures).

An operator ¢ : M —> M’ is limit computable if there exists f : M x A* xN - Q
a computable function with oracle such that f(u, u,n) — o(p)([u]).
n—oo

Computability obstruction: If (F"1), converges for all e M, c M, (A%)
e limpseo F™uis a limit-computable operator.

Some related questions 18 / 19



Some related questions

o What happens for multidimensional CA? (Ask Hellouin and Delacourt)
o What is the speed of convergence? (Ask Hellouin)

o What happens for set of adherence value?

o What happens if we forbid additional letters?

o Dependance on the initial measure (i.e. computation on the set of measures).

An operator ¢ : M —> M’ is limit computable if there exists f : M x A* xN - Q
a computable function with oracle such that f(u, u,n) — o(p)([u]).
n—oo

Computability obstruction: If (F"1), converges for all e M, c M, (A%)
e limpseo F™uis a limit-computable operator.

Theorem (Hellouin & S.)

Let ¢ : My_exp({0,1}2) — M, (AZ) be a limit computable operator, there
exists a cellular automaton (B%, F) and a factor 7 : B — {0,1} such that
V(F, p) = {o(mp)} for all g e My—exp(BZ) of full support.

Some related questions 18 / 19
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Some related questions

o What happens for multidimensional CA? (Ask Hellouin and Delacourt)

o What is the speed of convergence? (Ask Hellouin)

o What happens for set of adherence value?

o What happens if we forbid additional letters?

o Dependance on the initial measure (i.e. computation on the set of measures).
o Connexion between dynamic and algorithmic properties of the limit measures?

@ Robustness of the construction for some mistakes.
Perturbation of a cellular automaton F by a random noise R,
Limit measures are conjectured algorithmically simple. Some idea in this sense:
o Studies for the transformation of the interval (Braverman-Grigo-Rojas-2013);

o It is true for large class of exemples (Marcovici-S.-Taati-2016) for exemple:

If F is surjective, (Rco F)"pu — A 4.

Some related questions 18 / 19



Some related questions

o What happens for multidimensional CA? (Ask Hellouin and Delacourt)

o What is the speed of convergence? (Ask Hellouin)

o What happens for set of adherence value?

o What happens if we forbid additional letters?

o Dependance on the initial measure (i.e. computation on the set of measures).
o Connexion between dynamic and algorithmic properties of the limit measures?
@ Robustness of the construction for some mistakes.

o When appears emergence?

Some related questions 18 / 19



Two classes of distinct behavior

e Asymptotic Randomization e Emergent Defect Dynamics
) When iterating the automaton on a
1 n— - . .
= Fiu — A random cc?nflguratl_on, defects in only
n iz n—o0 one direction remain asymptotically.
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Two classes of distinct behavior

e Asymptotic Randomization

1 HZ_:le o @ Randomization results
n & B e A » Lind-84 shows that ((Z/2Z)%,1d + o)
randomizes Bernoulli measures

» Randomization for large classes of
Algebraic CA and initial measures.
Two approaches:

- stochastic processes Ferrari-Maass-
Martinez-Ney-00

- Harmonic analysis Pivato-Yassawi-02

Asymptotic Randomization 19 / 19
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e Asymptotic Randomization

@ Randomization results

1 n-1
SN PR — A
n k=0 n—oo

o Rigidity results

» Links with Furstenberg's problem: Which
measures of [0,1] are (x2, x3)-invariant?
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Two classes of distinct behavior

e Asymptotic Randomization

1, @ Randomization results
o2 P e o

k=0 o Rigidity results
» Links with Furstenberg's problem: Which
measures of [0,1] are (x2, x3)-invariant?
» F: A% AP algebraic, p (F,o)-invariant,
ergodicity properties on p and h, (o) >0
= p = A z (Host-Maass-Martinez-03,
Pivato-05, Sablik-07)
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Two classes of distinct behavior
e Asymptotic Randomization

1nd @ Randomization results

o Rigidity results

» Links with Furstenberg's problem: Which
measures of [0,1] are (x2, x3)-invariant?

» F: A% AP algebraic, p (F,o)-invariant,
ergodicity properties on p and h, (o) >0
= p = A z (Host-Maass-Martinez-03,
Pivato-05, Sablik-07)

» F: A% - A% algebraic, s: A — A
permutation, u (s o F,o)-invariant,
ergodicity properties on p and h, (o) >0
== u= A,z (Hellouin-Maass-Marcovici-
Sablik-13)

Some related questions Asymptotic Randomization 19 / 19



Two classes of distinct behavior

e Asymptotic Randomization

1 n-1

20000]

15000

10000

3000

@ Randomization results
o Rigidity results

o Empiric approach of randomization

Asymptotic Randomization 19 / 19
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Two classes of distinct behavior

e Asymptotic Randomization

1n—1
SN PR — A
ni=o

n—oo

@ Randomization results
o Rigidity results

o Empiric approach of randomization

20000] 20000
15000 15000

10000 10000

3000 “ B a ‘ i 5000

Challenging question

Prove randomization or rigidity results for
expansive cellular automata.

Asymptotic Randomization 19 / 19
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o Emergent Defect Dynamics

When iterating the automaton on a
random configuration, defects in only one
direction remain asymptotically.

Captive cellular automaton

F: A% - A% is captive if F(BZ) c BZ
for all Bc A.
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Two classes of distinct behavior

o lul " 1 o Emergent Defect Dynamics
clabisrea Ll LliiEl ol When iterating the automaton on a

F: A% —» A% is captive if F(BZ) c BZ  |random configuration, defects in one
for all Bc A. direction only remain asymptotically.

o Qualitative approach:

» Description of particles as defects
(Pivato's approach)
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Captive cellular automaton
F: A% - A% is captive if F(BZ) c BZ
for all B c A.

o Qualitative approach:
» Description of particles as defects
(Pivato's approach)
» Coalescent CA admit
asymptotically one speed of
particle [HS11]
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Two classes of distinct behavior

o lul " 1 o Emergent Defect Dynamics
clabisrea Ll LliiEl ol When iterating the automaton on a

F: A% —» A% is captive if F(BZ) c BZ  |random configuration, defects in one
for all Bc A. direction only remain asymptotically.

o Qualitative approach:

» Description of particles as defects
(Pivato's approach)
» Coalescent CA admit

asymptotically one speed of
particle [HS11]

e Quantitative approach:

» "gliders CA": precise description
of distribution of particles [HS12]

(T;(a) ) 2 ( [ —vx )
| ——= <x]) — —arctan _—

n n—oo Vy — Vo 4+ viX
where T, (x) = min {k eN| Fk+"(x)o = _1}

Principal tool: Brownian motion

Some related questions Emergent Defect Dynamics 19 / 19



Some related questions

o What happens for multidimensional CA?

o What is the speed of convergence?

o What happens for set of adherence value?

o What happens if we forbid additional letters?

o Dependance on the initial measure (i.e. computation on the set of measures).
o Connexion between dynamic and algorithmic properties of the limit measures?
@ Robustness of the construction for some mistakes.

o When appears emergence?

Some related questions Emergent Defect Dynamics 19 / 19
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