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Background

Context: We are interested in variable selection problems, where a
small number of potentially overlapping groups of input variables
explains the signal.

Examples:

I FMRI image classification (e.g., Jenatton et al., 2011a).

I Multiple-loci genome-wide association studies (e.g., Azencott
et al., 2013).

Figure by C.-A. Azencott

A standard approach: Regularization with sparsity-inducing norms.
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Latent group LASSO

In particular, Jacob et al. (2009) and Obozinski and Bach (2012)
propose the norm

Ω(w) = min
vA∈RP ,∑
A∈G vA=w

∑
A∈G
‖vA‖2f (A)1/2,

where

I G ⊆ 2{1,...,P} is the set of groups,

I P is the number of variables,

I f (A) represents the prior belief in the
subset A being relevant: If a group
A is irrelevant, then f (A) = +∞.

= + +

w vA vB vC

A

B

C

Goal: Learn the weights f (A), unknown in practice.
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Goal

Learn the set function f : G 7→ R+ ∪{+∞} from data
(in other words, learn the structure).

Remarks:

1. This requires a multi-task setting.

2. A relevant 6= A “on” in every single task.
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What we build on: Sparse Bayesian learning

Our approach follows the pattern of sparse Bayesian models
(Palmer et al., 2006; Seeger and Nickisch, 2011, among others).

Main idea: Place a super-Gaussian sparsity prior on each
component of the parameter vector and learn using variational
inference.

We take these ideas two steps further:

I we propose a formulation suitable for structured sparsity with
any family of groups, as opposed to classical sparsity,

I we learn the hyperparameters that are supposed to be fixed
and common to all variables in existing work.
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A probabilistic model for structured sparse linear regression

We consider K linear regression problems with

I design matrices X k ∈ RNk×P ,

I response vectors yk ∈ RNk
,

k ∈ {1, . . . ,K}.

For each X k and yk , we assume

yk ∼ N (X kwk , σ2I ).

Example: X k – genomes of individuals, yk – phenotypes.

8 / 36



A probabilistic model for structured sparse linear regression

Let V be the set {1, . . . ,P}. For G ⊆ 2V , we assume

wk =
∑
A∈G

vkA,

where, for each k ,

I ∀A ∈ G, vkA is a vector in RP supported on A,

I {vkA}A∈G are jointly independent, and

I ∀A ∈ G, vkA has a density

p(vkA|f (A)) = qA(‖vkA‖2f (A)1/2)f (A)|A|/2,

where qA is a zero-mean heavy-tailed distribution.
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Group weights as hyperparameters of heavy-tailed priors

The inverse scale parameter of the distribution on vkA, f (A),
captures the relevance of the group A:

I The smaller f (A), the more relevant the group, that is, the
larger the values vkA is likely to take.

I Even if the group A is relevant, not all vkA, k = 1, . . . ,K have
to be large.
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Link with sparsity-inducing norms

Note the resemblance between maximizing log p(wk |f ) for fixed f

log p(wk |f ) =
∑
A∈A

log qA(‖vkA‖2f (A)1/2) + const

and the latent group LASSO norm

Ω(wk) = min
vk
A∈R

P ,∑
A∈G vk

A=wk

∑
A∈G
‖vkA‖2f (A)1/2.

When qA is the generalized Gaussian density, the two expressions
match exactly.
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Goal: Maximize “type-II” likelihood

Find f (A),A ∈ G, maximizing the likelihood

p(y1, . . . , yK |f ) =
K∏

k=1

∫
p(yk |X kwk , σ2I )

∏
A∈G

p(vkA|f (A))dvkA,

where the vkA are marginalized over.
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Super-Gaussian priors

We assume that qA is a scale mixture of Gaussians:

qA(u) =

∫ ∞
0
N (u|0, s)rA(s)ds.

Examples: Student’s t, generalized Gaussian.

Why?

1. Heavy-tailed, hence suitable for modeling sparsity.

2. Amenable to variational optimization.
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Super-Gaussian priors

All Gaussian scale mixtures qA are also super-Gaussian
distributions (Palmer et al., 2006):

I the logarithm of qA is convex in u2,

I the logarithm of qA is non-increasing.

We can therefore write

log qA(u) = sup
s≥0
−u2

2s
− φA(s),

where φ(s) is convex in 1/s, by convex conjugacy.
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Inference

We use variational optimization to infer the set function f from
data (building on work by Palmer et al. (2006) and Seeger and
Nickisch (2011)).

The variational bound on the marginal likelihood p(y |f ) is
amenable to optimization via alternating analytic updates, finding
a local optimum.

The updates are equivalent to mean field updates, using the scale
mixture representation of qA (Palmer et al., 2006).
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Does it work?

I K = 10, 000, P = 1, X k = 1 for all k ∈ {1, . . . ,K}, σ2 = 1.

I G = {{1}}. yk = wk + εk ∈ R.

I f ∈ {14 equidistant values on the log. scale in [0.02, 50]}.
I Goal: recover f .
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Regularization

Use the improper hyperprior

p(f (A)) ∝ f (A)β

to encourage f (A) to go to infinity when the variance of vkA is
small.

The only update that changes is that for f (A).
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The effect of regularization
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Signal variance and noise variance

We measure the relevance of the group of variables A by the
expectation of ‖vkA‖22,

E
[
‖vkA‖22

]
=

E‖z‖2∼qA
[
‖z‖22

]
f (A)

.

As E
[
‖wk‖22

]
=

∑
A∈A E

[
‖vkA‖22

]
, E

[
‖vkA‖22

]
allows us to

measure the contribution of the group A w.r.t. E
[
‖wk‖22

]
.

We call E
[
‖wk‖22

]
total signal variance, E

[
‖vkA‖22

]
signal variance

coming from the group A, and Pσ2 total noise variance.
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Structured sparsity with two variables

I K = 5, 000, P = 2, X k = I for all k ∈ {1, . . . ,K},
G = {{1}, {2}, {1, 2}}, σ2 = 1.

I Goal: recover f ({1}), f ({2}), f ({1, 2}).
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100
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−100
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100
Pair dominates

wk = vk{1} + vk{2} wk = vk{1,2}
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Structured sparsity with two variables

Red – singletons dominate, blue – pair dominates.
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Denoising with toy data: Setup

I K = 10, 000, P = 10, X k = I for all k ∈ {1, . . . ,K}.
I G = {{Q}Q=1,...,P , {1, . . . ,Q}Q=2,...,P}.
I Goal: Given yk , k ∈ 1, . . . ,K , find the signals wk .

1 2 3 4 5 6 7 8 9 10
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Denoising with toy data: Setup

We consider three different ways of generating data:

I Singletons: {1}, . . . , {5}
relevant, all other groups
irrelevant.

I One group: Only
{1, 2, 3, 4, 5} is relevant.

I Overlapping groups: The
groups {1}, {1, 2}, . . . ,
{1, 2, 3, 4, 5} are relevant.

1 2 3 4 5 6 7 8 9 10

In all cases, σ2 set so that the total signal variance equals the total
noise variance.

26 / 36



Denoising with toy data: Setup

We consider three different ways of generating data:

I Singletons: {1}, . . . , {5}
relevant, all other groups
irrelevant.

I One group: Only
{1, 2, 3, 4, 5} is relevant.

I Overlapping groups: The
groups {1}, {1, 2}, . . . ,
{1, 2, 3, 4, 5} are relevant.

1 2 3 4 5 6 7 8 9 10

In all cases, σ2 set so that the total signal variance equals the total
noise variance.

26 / 36



Denoising with toy data: Setup

We consider three different ways of generating data:

I Singletons: {1}, . . . , {5}
relevant, all other groups
irrelevant.

I One group: Only
{1, 2, 3, 4, 5} is relevant.

I Overlapping groups: The
groups {1}, {1, 2}, . . . ,
{1, 2, 3, 4, 5} are relevant.

1 2 3 4 5 6 7 8 9 10

In all cases, σ2 set so that the total signal variance equals the total
noise variance.

26 / 36



Denoising with toy data: Setup

We consider four models for inference:

I LASSO-like:
G = {{1}, . . . , {P}}, f (A)
constant across G.

I Weighted LASSO-like:
G = {{1}, . . . , {P}}.

I Structured: G =
{{Q}Q=1,...,P , {1, . . . ,Q}Q=2,...,P}.

I Structured(AS): G not
specified in advance.

1 2 3 4 5 6 7 8 9 10

Goal: Given yk , k ∈ 1, . . . ,K , find the clean signals wk .

27 / 36



Denoising with toy data: Setup

We consider four models for inference:

I LASSO-like:
G = {{1}, . . . , {P}}, f (A)
constant across G.

I Weighted LASSO-like:
G = {{1}, . . . , {P}}.

I Structured: G =
{{Q}Q=1,...,P , {1, . . . ,Q}Q=2,...,P}.

I Structured(AS): G not
specified in advance.

1 2 3 4 5 6 7 8 9 10

Goal: Given yk , k ∈ 1, . . . ,K , find the clean signals wk .

27 / 36



Denoising with toy data: Setup

We consider four models for inference:

I LASSO-like:
G = {{1}, . . . , {P}}, f (A)
constant across G.

I Weighted LASSO-like:
G = {{1}, . . . , {P}}.

I Structured: G =
{{Q}Q=1,...,P , {1, . . . ,Q}Q=2,...,P}.

I Structured(AS): G not
specified in advance.

1 2 3 4 5 6 7 8 9 10

Goal: Given yk , k ∈ 1, . . . ,K , find the clean signals wk .

27 / 36



Denoising with toy data: Setup

We consider four models for inference:

I LASSO-like:
G = {{1}, . . . , {P}}, f (A)
constant across G.

I Weighted LASSO-like:
G = {{1}, . . . , {P}}.

I Structured: G =
{{Q}Q=1,...,P , {1, . . . ,Q}Q=2,...,P}.

I Structured(AS): G not
specified in advance.

Goal: Given yk , k ∈ 1, . . . ,K , find the clean signals wk .

27 / 36



Denoising with toy data: Results

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

18.5±0.3 18.6±0.4 58.4±1.1
1 2 3 4 5 6 7 8 9 10

14.5±0.3 14.5±0.3 42.8±0.9
1 2 3 4 5 6 7 8 9 10

14.8±0.3 13.8±0.3 43.0±0.9

Structured(AS) 14.6±0.3 14.0±0.3 42.8±0.9

Mean squared error ± 95%-confidence error bars
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Denoising with toy data: Results

Zoom into

1 2 3 4 5 6 7 8 9 10

,

1 2 3 4 5 6 7 8 9 10

and

1 2 3 4 5 6 7 8 9 10

,

1 2 3 4 5 6 7 8 9 10

:
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Image denoising with wavelets: Setup

I Each task is denoising a 32× 32 image using wavelets
(P = 1024).

I The Haar wavelet basis for 2-dimensional images (Mallat,
1998) can naturally be arranged in a rooted directed tree.

I We consider four models for inference:
I LASSO-like: G = {{1}, . . . , {P}}, f (A) constant across G.
I Weighted LASSO-like: G = {{1}, . . . , {P}}.
I Structured:
G = V ∪ {A|A is a path from the root in the wavelet tree.}
(Jenatton et al. (2011b) have shown that structured
sparsity-inducing norms with such groups improve over the `1
norm in this task.)

I Structured(AS): G not specified in advance.

Goal: Given yk , k ∈ 1, . . . ,K , find the images wk .
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Image denoising with wavelets: Results

Barbara House Fingerprint Lena

LASSO-like 179.0±4.6 (0.001) 107.5±2.6 (0.001) 247.5±1.7 (0.005) 110.3±2.8 (0.001)

W.LASSO-like 163.3±5.1 (0) 93.7±2.6 (0) 195.0±1.8 (0.0001) 89.5±3.2 (0)

Structured 164.8±5.3 (0) 95.3±2.9 (0) 193.6±1.8 (0.0005) 90.3±3.5 (0)

Structured(AS) 163.1±5.0 (0.0001) 92.9±2.3 (0.0001) 194.9±1.8 (0.001) 89.5±2.8 (0.0001)

Tree-`2 155.3±6.4 93.3±3.8 214.9±2.4 88.7±3.7

LASSO 176.7±6.4 102.1±3.6 250.0±2.2 106.6±3.9
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Summary and outlook

I We propose a general model and an associated inference
scheme to automatically learn group weights for structured
sparse linear regression.

I We propose a regularization method that in practice
circumvents the problems of the classical variational scheme
for our model.

I We propose a heuristic allowing to explore a large set of
groups.

I Experimental results in denoising show that learning group
weights can make a difference.

I Other likelihood models (e.g., for yk binary)?
I Avoid considering vkA explicitly (for computational efficiency)?
I GWAS application

N. Shervashidze and F. Bach. Learning the structure for structured sparsity.
IEEE Transactions on Signal Processing, 63(18):4894-4902, 2015.

http://cbio.ensmp.fr/~nshervashidze/code/LLSS
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