Percolation by cumulative merging
and phase transition of the contact process

Laurent Ménard (Modal'X)
joint work with Arvind Singh (Orsay)
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The contact process (Susceptible-Infected-Susceptible)

Epidemic model on graphs introduced by [Harris 74]
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G = (V, F) locally finite graph, A > 0.

e \ertices are either healthy or infected.

e An infected site recovers at rate 1.

e An healthy site is infected at rate
Ax nbr of infected neighbors.
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The contact process (Susceptible-Infected-Susceptible)

Epidemic model on graphs introduced by [Harris 74]

444441+ G = (V,E) locally finite graph, A > 0.

: : : : : : : e \ertices are either healthy or infected.
: : : : : : : e An infected site recovers at rate 1.
BN e An healthy site is infected at rate
4+t 4+ 1+ Ax nbr of infected neighbors.

On an infinite graph, phase transition: there is A, € |0, 00| such that
o if A < )., the infection dies out a.s;
o if A\ > \_, the infection survives a.s..

Question: condition on G to ensure \. > 07



The contact process on a graph with bounded degrees

If G has bounded degrees, then \. > 0.

Compare with branching random walk:

e No interaction between particles;
e particles die at rate 1;
e particles give birth to new particles on neighboring sites at rate .
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The contact process on a graph with bounded degrees

If G has bounded degrees, then \. > 0.

Compare with branching random walk:

e No interaction between particles;
e particles die at rate 1;
e particles give birth to new particles on neighboring sites at rate .

For this process: A\. > 1/d,,q:.

Comparison gives nothing for graphs with unbounded degrees: BRW
survives locally on large degree star-graphs.

e No other method to prove that contact process dies out.

e No example of graph with unbounded degrees for which we know
Ae > 0.
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Heuristics for the contact process

Contact process on a star graph of large degree d:

! e start with only @ infected.
° ° o If A > \.(d), survival time of the process is ~ exp(d).
[

Now fix A > 0 and consider contact process on a gaph G s.t.

e One vertex (@) has large degree dy with A > \.(dp);
e all other vertices have small degrees d with A < \.(d).

e Start with only @ infected.

e Force @ to stay infected a time exp(dp).

0"&0 ,: e After that time, force the whole star
: around @ to recover.

S -

Maximal distance reached by infection is ~ d.
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Heuristics for the contact process

Same as before for @ and start of the infection.
In addition suppose:

o At distance < dy from @ , there
is another vertex (@) with large
degree dy s.t. A > A.(dq).

e Suppose also d; < dp.

® cannot send infections to @ and
the survival time of the process is

f ~ exp(dy) + exp(dy) =~ exp(dp).
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Same as before for @ and start of the infection.

Now suppose:

G T \ e another vertex (® ) with large
ol , d‘ degree ds s.t. A > A.(ds).
e ‘2 e And a last one (@) with large
degree ds s.t. A > A.(d3).
, ', o dISt(. ,.) < dz A\ dg
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Heuristics for the contact process

Same as before for @ and start of the infection.

Now suppose:

e another vertex (@) with large
degree ds s.t. A > A.(d>).

e And a last one (@) with large
degree d3 s.t. A > A.(d3).

o dISt(. ,‘) < dz N\ dg

® and @ interact and

their combined survival time is
~ exp(da) X exp(ds) = exp(da + d3)

— Now @® and ® can reach® or @ |
—> @ ©® and @ are all in interaction.

— @ still cannot reach the other 3 vertices to interact.
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d(A, B) > min {deg(A);deg(B)}?

e Is all this hand waving valid?
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Cumulative Merging: Admissible partitions

Consider a weighted graph G = (V, E,r) with r : V' — [0, o0].

Definition
a partition P of V' is admissible iff VA # B € P:

da(A, B) > r(A) Ar(B).

e {V'} is admissible.
e |f P and P, are admissible, then

P1 NPy = {ClﬂCQ: C1 € Py, Cs EPQ}

Is admissible.

Definition

C(G,r) = ﬂ P (finest admissible partition)
admissible P
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Cumulative Merging: Example and basic properties

1

1 2 1 4 1 1
O—eo—0—eo— —eo—0—o—0—0— — —e
8 8 1 8 2 2

Proposition

Clusters in % are not necessarily connected sets!
fr(x) <1, then {z} € F.

o
o
e If € has an infinite cluster, it has infinite weight and is unique.
e For any C € €, one has |C| < max{1,r(C)}.
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Cumulative Merging: Phase transitions

Several natural choices of weights for a locally finite graph (V,E):
o (7(x))zey iid. Bernoulli r.v. with parameter p.
o (r(x))zey i.id. rv. with law A x Z, A > 0 deterministic.

‘deg(x) if deg(z) > A

e VeV, r(x)=:- .
0 otherwise.

\

Critical parameters for the existence of an infinite cluster in €(V, E,r).

Theorem:
1. CMP on Z%: p. € (0,1).
2. CMP on Z%: if E|ZP] < oo for 8 > (4d)?, then A, € (0, 00).

3. CMP on d-dimensional Delaunay triangulation or geometric graph:
A, < 0.

Proofs: Multiscale analysis
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(i.e. it dies out for small infection rates).




Cumulative Merging: Link with the contact process

Need to change the definition of admissible partitions:
Fix a > 1, P is admissible iffFVA,B ¢ P

da(A,B) > (r(A) Ar(B))".
Theorem:

Let G = (V, E) be a locally finite graph. Suppose that, for a@ > 2.5,
CMP on G with weights given by:

(deg(x) if deg(xz) > A;
0 otherwise.

Ve eV, r(x) =«

\

has a non-trivial phase transition (i.e. A, < 00).

Then the contact process on G has a non trivial phase transition
(i.e. it dies out for small infection rates).

Thank you!



