Percolation by cumulative merging and phase transition of the contact process

Laurent Ménard (Modal'X)

joint work with Arvind Singh (Orsay)

$$G = (V, E)$$
 locally finite graph, $\lambda > 0$.

- Vertices are either **healthy** or **infected**.
- An infected site **recovers** at rate 1.
- An healthy site is infected at rate $\lambda \times$ nbr of infected neighbors.

$$G = (V, E)$$
 locally finite graph, $\lambda > 0$.

- Vertices are either **healthy** or **infected**.
- An infected site **recovers** at rate 1.
- An healthy site is infected at rate $\lambda \times$ nbr of infected neighbors.

Epidemic model on graphs introduced by [Harris 74]

G = (V, E) locally finite graph, $\lambda > 0$.

- Vertices are either **healthy** or **infected**.
- An infected site **recovers** at rate 1.
- An healthy site is infected at rate $\lambda \times$ nbr of infected neighbors.

$$G = (V, E)$$
 locally finite graph, $\lambda > 0$.

- Vertices are either **healthy** or **infected**.
- An infected site **recovers** at rate 1.
- An healthy site is infected at rate $\lambda \times$ nbr of infected neighbors.

$$G = (V, E)$$
 locally finite graph, $\lambda > 0$.

- Vertices are either **healthy** or **infected**.
- An infected site **recovers** at rate 1.
- An healthy site is infected at rate $\lambda \times$ nbr of infected neighbors.

$$G = (V, E)$$
 locally finite graph, $\lambda > 0$.

- Vertices are either **healthy** or **infected**.
- An infected site **recovers** at rate 1.
- An healthy site is infected at rate $\lambda \times$ nbr of infected neighbors.

$$G = (V, E)$$
 locally finite graph, $\lambda > 0$.

- Vertices are either **healthy** or **infected**.
- An infected site **recovers** at rate 1.
- An healthy site is infected at rate $\lambda \times$ nbr of infected neighbors.

Epidemic model on graphs introduced by [Harris 74]

G = (V, E) locally finite graph, $\lambda > 0$.

- Vertices are either **healthy** or **infected**.
- An infected site **recovers** at rate 1.
- An healthy site is infected at rate $\lambda \times$ nbr of infected neighbors.

Epidemic model on graphs introduced by [Harris 74]

G = (V, E) locally finite graph, $\lambda > 0$.

- Vertices are either **healthy** or **infected**.
- An infected site **recovers** at rate 1.
- An healthy site is infected at rate $\lambda \times$ nbr of infected neighbors.

On an infinite graph, phase transition: there is $\lambda_c \in [0, \infty[$ such that

- if $\lambda < \lambda_c$, the infection **dies out** *a.s.*;
- if $\lambda > \lambda_c$, the infection survives *a.s.*.

Epidemic model on graphs introduced by [Harris 74]

G = (V, E) locally finite graph, $\lambda > 0$.

- Vertices are either **healthy** or **infected**.
- An infected site **recovers** at rate 1.
- An healthy site is infected at rate $\lambda \times$ nbr of infected neighbors.

On an infinite graph, phase transition: there is $\lambda_c \in [0, \infty[$ such that

- if $\lambda < \lambda_c$, the infection **dies out** *a.s.*;
- if $\lambda > \lambda_c$, the infection survives *a.s.*.

Question: condition on G to ensure $\lambda_c > 0$?

If G has **bounded** degrees, then $\lambda_c > 0$.

Compare with **branching random walk**:

- No interaction between particles;
- particles die at rate 1;
- particles give birth to new particles on neighboring sites at rate λ .

If G has **bounded** degrees, then $\lambda_c > 0$.

Compare with **branching random walk**:

- No interaction between particles;
- particles die at rate 1;
- particles give birth to new particles on neighboring sites at rate λ .

For this process: $\lambda_c \geq 1/d_{max}$.

If G has **bounded** degrees, then $\lambda_c > 0$.

Compare with **branching random walk**:

- No interaction between particles;
- particles die at rate 1;
- particles give birth to new particles on neighboring sites at rate λ .

For this process: $\lambda_c \geq 1/d_{max}$.

Comparison gives nothing for graphs with **unbounded** degrees: BRW survives locally on large degree star-graphs.

If G has **bounded** degrees, then $\lambda_c > 0$.

Compare with **branching random walk**:

- No interaction between particles;
- particles die at rate 1;
- particles give birth to new particles on neighboring sites at rate λ .

For this process: $\lambda_c \geq 1/d_{max}$.

Comparison gives nothing for graphs with **unbounded** degrees: BRW survives locally on large degree star-graphs.

- No other method to prove that contact process dies out.
- No example of graph with unbounded degrees for which we know $\lambda_c > 0.$

Contact process on a star graph of large degree d:

- start with only infected.
- If $\lambda > \lambda_c(d)$, survival time of the process is $\approx \exp(d)$.

Contact process on a star graph of large degree d:

- start with only infected.
- If $\lambda > \lambda_c(d)$, survival time of the process is $\approx \exp(d)$.

Now fix $\lambda > 0$ and consider contact process on a gaph G s.t.

- One vertex (•) has large degree d_0 with $\lambda > \lambda_c(d_0)$;
- all other vertices have small degrees d with $\lambda \ll \lambda_c(d)$.

Contact process on a star graph of large degree d:

- start with only infected.
- If $\lambda > \lambda_c(d)$, survival time of the process is $\approx \exp(d)$.

Now fix $\lambda > 0$ and consider contact process on a gaph G s.t.

- One vertex (•) has large degree d_0 with $\lambda > \lambda_c(d_0)$;
- all other vertices have small degrees d with $\lambda \ll \lambda_c(d)$.

- Start with only infected.
- Force to stay infected a time $\exp(d_0)$.
- After that time, force the whole star around
 to recover.

Contact process on a star graph of large degree d:

- start with only infected.
- If $\lambda > \lambda_c(d)$, survival time of the process is $\approx \exp(d)$.

Now fix $\lambda > 0$ and consider contact process on a gaph G s.t.

- One vertex (•) has large degree d_0 with $\lambda > \lambda_c(d_0)$;
- all other vertices have small degrees d with $\lambda \ll \lambda_c(d)$.

- Start with only infected.
- Force to stay infected a time $\exp(d_0)$.
- After that time, force the whole star around
 to recover.

Maximal distance reached by infection is $\approx d_0$.

Same as before for • and start of the infection.

Same as before for <a>o and start of the infection.

In addition suppose:

- At distance < d₀ from ●, there is another vertex (●) with large degree d₁ s.t. λ > λ_c(d₁).
- Suppose also $d_1 \ll d_0$.

Same as before for <a>o and start of the infection.

In addition suppose:

- At distance $< d_0$ from •, there is another vertex (•) with large degree d_1 s.t. $\lambda > \lambda_c(d_1)$.
- Suppose also $d_1 \ll d_0$.

• cannot send infections to • and the survival time of the process is $\approx \exp(d_0) + \exp(d_1) \approx \exp(d_0).$

Same as before for <a>o and start of the infection.

Now suppose:

- another vertex (•) with large degree d_2 s.t. $\lambda > \lambda_c(d_2)$.
- And a last one (•) with large degree d_3 s.t. $\lambda > \lambda_c(d_3)$.
- dist(•,•) < $d_2 \wedge d_3$

Same as before for <a>o and start of the infection.

Now suppose:

- another vertex (•) with large degree d_2 s.t. $\lambda > \lambda_c(d_2)$.
- And a last one (•) with large degree d_3 s.t. $\lambda > \lambda_c(d_3)$.

• dist(•,•) < $d_2 \wedge d_3$

Same as before for <a>o and start of the infection.

Now suppose:

- another vertex (•) with large degree d_2 s.t. $\lambda > \lambda_c(d_2)$.
- And a last one (●) with large degree d₃ s.t. λ > λ_c(d₃).

• dist(•,•) <
$$d_2 \wedge d_3$$

• and • interact and their combined survival time is $\approx \exp(d_2) \times \exp(d_3) = \exp(d_2 + d_3)$

Same as before for <a>o and start of the infection.

Now suppose:

- another vertex (•) with large degree d_2 s.t. $\lambda > \lambda_c(d_2)$.
- And a last one (•) with large degree d_3 s.t. $\lambda > \lambda_c(d_3)$.

• dist(•,•) <
$$d_2 \wedge d_3$$

• and • interact and their combined survival time is $\approx \exp(d_2) \times \exp(d_3) = \exp(d_2 + d_3)$

Same as before for • and start of the infection.

Now suppose:

- another vertex (•) with large degree d_2 s.t. $\lambda > \lambda_c(d_2)$.
- And a last one (•) with large degree d_3 s.t. $\lambda > \lambda_c(d_3)$.

• dist(•,•) <
$$d_2 \wedge d_3$$

• and • interact and their combined survival time is $\approx \exp(d_2) \times \exp(d_3) = \exp(d_2 + d_3)$

Now • and • can reach • or • !

Same as before for <a>o and start of the infection.

Now suppose:

- another vertex (•) with large degree d_2 s.t. $\lambda > \lambda_c(d_2)$.
- And a last one (•) with large degree d_3 s.t. $\lambda > \lambda_c(d_3)$.

• dist(•,•) <
$$d_2 \wedge d_3$$

• and • interact and their combined survival time is $\approx \exp(d_2) \times \exp(d_3) = \exp(d_2 + d_3)$

Now • and • can reach • or • !
• • , • and • are all in interaction.

Same as before for <a>o and start of the infection.

Now suppose:

- another vertex (•) with large degree d_2 s.t. $\lambda > \lambda_c(d_2)$.
- And a last one (•) with large degree d_3 s.t. $\lambda > \lambda_c(d_3)$.

• dist(•,•) <
$$d_2 \wedge d_3$$

• and • interact and their combined survival time is $\approx \exp(d_2) \times \exp(d_3) = \exp(d_2 + d_3)$

Now • and • can reach • or • !
•, • and • are all in interaction.

Same as before for • and start of the infection.

Now suppose:

- another vertex (•) with large degree d_2 s.t. $\lambda > \lambda_c(d_2)$.
- And a last one (•) with large degree d_3 s.t. $\lambda > \lambda_c(d_3)$.

• dist(•,•) <
$$d_2 \wedge d_3$$

• and • interact and their combined survival time is $\approx \exp(d_2) \times \exp(d_3) = \exp(d_2 + d_3)$

Now • and • can reach • or • !

, • and • are all in interaction.

→ ● still cannot reach the other 3 vertices to interact.

Questions:

- Can we recursively group vertices in classes such that for any two different classes A and B we have:
 d(A, B) > min {deg(A); deg(B)}?
- Is all this hand waving valid?

Questions:

- Can we recursively group vertices in classes such that for any two different classes A and B we have:
 d(A, B) > min {deg(A); deg(B)}?
- Is all this hand waving valid?

Cumulative Merging

Cumulative Merging: Admissible partitions

Consider a weighted graph G = (V, E, r) with $r: V \to [0, \infty]$.

Definition a partition \mathcal{P} of V is **admissible** *iff* $\forall A \neq B \in \mathcal{P}$: $d_G(A, B) > r(A) \land r(B).$

Cumulative Merging: Admissible partitions

Consider a weighted graph G = (V, E, r) with $r: V \to [0, \infty]$.

Definition a partition \mathcal{P} of V is **admissible** *iff* $\forall A \neq B \in \mathcal{P}$:

 $d_G(A,B) > r(A) \wedge r(B).$

- $\{V\}$ is admissible.
- If \mathcal{P}_1 and \mathcal{P}_2 are admissible, then

 $\mathcal{P}_1 \cap \mathcal{P}_2 := \{ C_1 \cap C_2 : C_1 \in \mathcal{P}_1, C_2 \in \mathcal{P}_2 \}$

is admissible.

Cumulative Merging: Admissible partitions

Consider a weighted graph G = (V, E, r) with $r: V \to [0, \infty]$.

Definition a partition \mathcal{P} of V is **admissible** *iff* $\forall A \neq B \in \mathcal{P}$:

 $d_G(A,B) > r(A) \wedge r(B).$

- $\{V\}$ is admissible.
- If \mathcal{P}_1 and \mathcal{P}_2 are admissible, then

$$\mathcal{P}_1 \cap \mathcal{P}_2 := \{ C_1 \cap C_2 : C_1 \in \mathcal{P}_1, C_2 \in \mathcal{P}_2 \}$$

is admissible.

Cumulative Merging: Example and basic properties 1 1 2 1 4 1 1 1

Cumulative Merging: Example and basic properties 1 2 1 1 1 2 1 4 1 1 1 13

Cumulative Merging: Example and basic properties 1 2 1 1 1 2 1 4 1 1 1 13

Proposition

- Clusters in $\mathscr C$ are not necessarily connected sets!
- If r(x) < 1, then $\{x\} \in \mathscr{C}$.
- If $\mathscr C$ has an infinite cluster, it has infinite weight and is unique.
- For any $C \in \mathscr{C}$, one has $|C| \leq \max\{1, r(C)\}$.

Several natural choices of weights for a locally finite graph (V,E):

Several natural choices of weights for a locally finite graph (V,E):

• $(r(x))_{x \in V}$ *i.i.d.* Bernoulli *r.v.* with parameter *p*.

Several natural choices of weights for a locally finite graph (V,E):

- $(r(x))_{x \in V}$ *i.i.d.* Bernoulli *r.v.* with parameter *p*.
- $(r(x))_{x \in V}$ *i.i.d. r.v.* with law $\lambda \times Z$, $\lambda \ge 0$ deterministic.

Several natural choices of weights for a locally finite graph (V,E):

- $(r(x))_{x \in V}$ *i.i.d.* Bernoulli *r.v.* with parameter *p*.
- $(r(x))_{x \in V}$ *i.i.d. r.v.* with law $\lambda \times Z$, $\lambda \ge 0$ deterministic.

•
$$\forall x \in V, r(x) = \begin{cases} \deg(x) & \text{if } \deg(x) > \Delta; \\ 0 & \text{otherwise.} \end{cases}$$

Several natural choices of weights for a locally finite graph (V,E):

- $(r(x))_{x \in V}$ *i.i.d.* Bernoulli *r.v.* with parameter *p*.
- $(r(x))_{x \in V}$ *i.i.d. r.v.* with law $\lambda \times Z$, $\lambda \ge 0$ deterministic.

•
$$\forall x \in V, r(x) = \begin{cases} \deg(x) & \text{if } \deg(x) > \Delta; \\ 0 & \text{otherwise.} \end{cases}$$

Critical parameters for the existence of an infinite cluster in $\mathscr{C}(V, E, r)$.

Several natural choices of weights for a locally finite graph (V,E):

- $(r(x))_{x \in V}$ *i.i.d.* Bernoulli *r.v.* with parameter *p*.
- $(r(x))_{x \in V}$ *i.i.d. r.v.* with law $\lambda \times Z$, $\lambda \ge 0$ deterministic.

•
$$\forall x \in V, r(x) = \begin{cases} \deg(x) & \text{if } \deg(x) > \Delta; \\ 0 & \text{otherwise.} \end{cases}$$

Critical parameters for the existence of an infinite cluster in $\mathscr{C}(V, E, r)$.

Theorem: 1. CMP on \mathbb{Z}^d : $p_c \in (0, 1)$. 2. CMP on \mathbb{Z}^d : if $E[Z^\beta] < \infty$ for $\beta > (4d)^2$, then $\lambda_c \in (0, \infty)$. 3. CMP on *d*-dimensional Delaunay triangulation or geometric graph: $\Delta_c < \infty$.

Several natural choices of weights for a locally finite graph (V,E):

- $(r(x))_{x \in V}$ *i.i.d.* Bernoulli *r.v.* with parameter *p*.
- $(r(x))_{x \in V}$ *i.i.d. r.v.* with law $\lambda \times Z$, $\lambda \ge 0$ deterministic.

•
$$\forall x \in V, r(x) = \begin{cases} \deg(x) & \text{if } \deg(x) > \Delta; \\ 0 & \text{otherwise.} \end{cases}$$

Critical parameters for the existence of an infinite cluster in $\mathscr{C}(V, E, r)$.

Theorem:

- 1. CMP on \mathbb{Z}^d : $p_c \in (0, 1)$. 2. CMP on \mathbb{Z}^d : if $E[Z^\beta] < \infty$ for $\beta > (4d)^2$, then $\lambda_c \in (0, \infty)$.
- 3. CMP on *d*-dimensional Delaunay triangulation or geometric graph: $\Delta_c < \infty$.

Proofs: Multiscale analysis

Need to change the definition of admissible partitions: \mathcal{P} is admissible iff $\forall A, B \in \mathcal{P}$ $d_G(A, B) > r(A) \wedge r(B)$.

Need to change the definition of admissible partitions: Fix $\alpha > 1$, \mathcal{P} is **admissible** *iff* $\forall A, B \in \mathcal{P}$

 $d_G(A,B) > (r(A) \wedge r(B))^{\alpha}.$

Need to change the definition of admissible partitions: Fix $\alpha > 1$, \mathcal{P} is admissible iff $\forall A, B \in \mathcal{P}$ $d_G(A, B) > (r(A) \wedge r(B))^{\alpha}$.

Theorem:

Let G = (V, E) be a locally finite graph. Suppose that, for $\alpha > 2.5$, CMP on G with weights given by:

$$\forall x \in V, r(x) = \begin{cases} \deg(x) & \text{if } \deg(x) > \Delta; \\ 0 & \text{otherwise.} \end{cases}$$

has a non-trivial phase transition (*i.e.* $\Delta_c < \infty$).

Then the contact process on G has a non trivial phase transition (*i.e.* it dies out for small infection rates).

Need to change the definition of admissible partitions: Fix $\alpha > 1$, \mathcal{P} is admissible iff $\forall A, B \in \mathcal{P}$ $d_G(A, B) > (r(A) \wedge r(B))^{\alpha}$.

Theorem:

Let G = (V, E) be a locally finite graph. Suppose that, for $\alpha > 2.5$, CMP on G with weights given by:

$$\forall x \in V, \ r(x) = \begin{cases} \deg(x) & \text{if } \deg(x) > \Delta; \\ 0 & \text{otherwise.} \end{cases}$$

has a non-trivial phase transition (*i.e.* $\Delta_c < \infty$).

Then the contact process on G has a non trivial phase transition (*i.e.* it dies out for small infection rates).

Thank you!