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The contact process (Susceptible-Infected-Susceptible)

Epidemic model on graphs introduced by [Harris 74]

• Vertices are either healthy or infected.

• An infected site recovers at rate 1.

• An healthy site is infected at rate
λ× nbr of infected neighbors.

G = (V,E) locally finite graph, λ > 0.
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• An infected site recovers at rate 1.
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λ× nbr of infected neighbors.

On an infinite graph, phase transition: there is λc ∈ [0,∞[ such that
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The contact process (Susceptible-Infected-Susceptible)

Epidemic model on graphs introduced by [Harris 74]

• Vertices are either healthy or infected.

• An infected site recovers at rate 1.

• An healthy site is infected at rate
λ× nbr of infected neighbors.

On an infinite graph, phase transition: there is λc ∈ [0,∞[ such that
• if λ < λc, the infection dies out a.s.;
• if λ > λc, the infection survives a.s..

Question: condition on G to ensure λc > 0?

G = (V,E) locally finite graph, λ > 0.
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The contact process on a graph with bounded degrees

If G has bounded degrees, then λc > 0.

Compare with branching random walk:

• No interaction between particles;
• particles die at rate 1;
• particles give birth to new particles on neighboring sites at rate λ.

For this process: λc ≥ 1/dmax.

Comparison gives nothing for graphs with unbounded degrees: BRW
survives locally on large degree star-graphs.

• No other method to prove that contact process dies out.
• No example of graph with unbounded degrees for which we know
λc > 0.
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Contact process on a star graph of large degree d:

• start with only infected.

• If λ > λc(d), survival time of the process is ≈ exp(d).

Now fix λ > 0 and consider contact process on a gaph G s.t.

• One vertex ( ) has large degree d0 with λ > λc(d0);
• all other vertices have small degrees d with λ� λc(d).

• start with only infected.

G • Start with only infected.
• Force to stay infected a time exp(d0).
• After that time, force the whole star

around to recover.

Maximal distance reached by infection is ≈ d0.

d0
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G

d0

Same as before for and start of the infection.

• At distance < d0 from , there
is another vertex ( ) with large
degree d1 s.t. λ > λc(d1).

• Suppose also d1 � d0.

d1

cannot send infections to and
the survival time of the process is
≈ exp(d0) + exp(d1) ≈ exp(d0).

In addition suppose:
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• And a last one ( ) with large
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• dist( , ) < d2 ∧ d3

Now suppose:

and interact and
their combined survival time is
≈ exp(d2)× exp(d3) = exp(d2 + d3)

Now and can reach or !

, and are all in interaction.

still cannot reach the other 3 vertices to interact.
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d1

Questions:

d(A,B) > min {deg(A); deg(B)} ?

• Can we recursively group vertices in
classes such that for any two
different classes A and B we have:

• Is all this hand waving valid?
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Consider a weighted graph G = (V,E, r) with r : V → [0,∞].

Definition
a partition P of V is admissible iff ∀A 6= B ∈ P:

dG(A,B) > r(A) ∧ r(B).

• {V } is admissible.
• If P1 and P2 are admissible, then

P1 ∩ P2 := {C1 ∩ C2 : C1 ∈ P1, C2 ∈ P2}
is admissible.

Definition

C (G, r) :=
⋂

admissible P

P (finest admissible partition)
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Proposition

• Clusters in C are not necessarily connected sets!
• If r(x) < 1, then {x} ∈ C .
• If C has an infinite cluster, it has infinite weight and is unique.
• For any C ∈ C , one has |C| ≤ max{1, r(C)}.
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Several natural choices of weights for a locally finite graph (V,E):

• (r(x))x∈V i.i.d. Bernoulli r.v. with parameter p.

• (r(x))x∈V i.i.d. r.v. with law λ× Z, λ ≥ 0 deterministic.

• ∀x ∈ V, r(x) =

{
deg(x) if deg(x) > ∆;

0 otherwise.

Critical parameters for the existence of an infinite cluster in C (V,E, r).

Theorem:
1. CMP on Zd: pc ∈ (0, 1).
2. CMP on Zd: if E

[
Zβ
]
<∞ for β > (4d)2, then λc ∈ (0,∞).

3. CMP on d-dimensional Delaunay triangulation or geometric graph:
∆c <∞.

Proofs: Multiscale analysis



Cumulative Merging: Link with the contact process

Need to change the definition of admissible partitions:

dG(A,B) > (r(A) ∧ r(B))
α
.

P is admissible iff ∀A,B ∈ P



Cumulative Merging: Link with the contact process

Need to change the definition of admissible partitions:

dG(A,B) > (r(A) ∧ r(B))
α
.

P is admissible iff ∀A,B ∈ PFix α > 1,



Cumulative Merging: Link with the contact process

Need to change the definition of admissible partitions:

dG(A,B) > (r(A) ∧ r(B))
α
.

P is admissible iff ∀A,B ∈ PFix α > 1,

Theorem:
Let G = (V,E) be a locally finite graph. Suppose that, for α > 2.5,
CMP on G with weights given by:

∀x ∈ V, r(x) =
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0 otherwise.
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Then the contact process on G has a non trivial phase transition
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Need to change the definition of admissible partitions:

dG(A,B) > (r(A) ∧ r(B))
α
.

P is admissible iff ∀A,B ∈ PFix α > 1,

Theorem:
Let G = (V,E) be a locally finite graph. Suppose that, for α > 2.5,
CMP on G with weights given by:

∀x ∈ V, r(x) =

{
deg(x) if deg(x) > ∆;

0 otherwise.

has a non-trivial phase transition (i.e. ∆c <∞).

Then the contact process on G has a non trivial phase transition
(i.e. it dies out for small infection rates).

Thank you!


