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Liquid/glass transition: a missing theory

”The deepest and most interesting unsolved problem in solid
state theory is probably the theory of the nature of glass and
the glass transition.” [Nobel prize P.W. Anderson|

Glasses display properties of both liquids and solids
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Liquid/glass transition

How can you manufacture a glass?

e Take a liquid and cool it rapidly in order to prevent
nucleation of the ordered crystal structure;

e relaxation times increase dramatically, the liquid falls out
of equilibrium and enters a metastable phase;

e the molecules move slower and slower:
your liquid is now a thick syrup..

e finally the liquid freezes in a structureless solid:
here is your glass.
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Key features of liquid/glass transition

e huge divergence of timescales;
e no significant structural changes;

e is it purely dynamical phenomenon or is there an
underlying thermodynamic transition?

e cooperative relaxation;

e dynamical heterogeneities: non trivial spatio-temporal
fluctuations, coexistence of frozen and mobile regions;

e rich phenomenology: anomalous transport properties,
aging, rejuvenation, ...

e a similar jamming transition: grains in powders, emulsions,
foams, colloidal suspensions, ...

C.TONINELLI



relaxation times
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Strong supercooled liquids: Arrhenius 7 ~ exp(AE/T)

Fragile supercooled liquids: superArrhenius 7 ~ exp(c/T?), ...
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Kinetically Constrained Spin Models, a.k.a. KCSM

Friedrickson Andersen model on Z?2

Configurations : 7 = {n; };cz2 with n; € {0,1}
Glauber dynamics = Birth and death of particles on Z?2
Kinetic constraint = at least 2 empty nearest neighbours

If constraint satisfied: 1 —0Orateq, 0— lratel —gq
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Ideas behind KCSM

e Liquid/glass transition is a purely dynamical phenomenon;
e free volume shrinks when temperature is lowered;

e molecules should escape the ”cage” formed by neighbours.

When density increases:
e motion becomes increasingly cooperative

e blocked structures may percolate — divergence of 7
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FA model, properties

e Constraint at  does not depend on 7,
— detailed balance w.r.t. product measure

pm) =[]0 —g"
i€Z2

e (i is not the unique invariant measure

e Blocked clusters, blocked configurations

e Non attractive dynamics — failure of coupling arguments
and coercive log-Sobolev type inequalities
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Blocked clusters

Is there a critical vacancy density g. > 0 below which blocked
clusters percolate and relaxation time diverge?

Friedrickson Andersen ’84: YES

. _ 0 if ¢g>q.
Jim (e Pergee) — p(ne) () = { 20 if g<q

FALSE!
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How can we identify blocked structures?

e Erase all particles which have the constraint satisfied;
e Iterate until no particle is left or until reaching a backbone
of particles that are all blocked by the constraints.

= Blocked backbone = blocked structures for KCSM dynamics

= Deterministic algorithm = Bootstrap Percolation (BP)
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Bootstrap percolation: key results

e blocked clusters do not percolate [Van Enter '87:
w(origin empty at the end of bootstrap) =1 Vg > 0

e crossover length L.
L x L box with periodic b.c., take joint limit L — oo ¢ — 0
wu(Iblocked cluster) — 0 if L > L,
wu(Iblocked cluster) — 1 if L < L,
2

L.~ eXp(@)

[Aizenmann, Lebowitz ’88, Holroyd 02, ... ]|

— L. = linear size of internally blocked clusters
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FA model: Ergodicity

p is ergodic Vg > 0 [Cancrini, Martinelli, Roberto, C.T. *08]:

Lf =0 — f constant a.s. w.r.t. u
— limy oo p(fFrg) — p(f)u(g) =0 Vf,g

Key ingredients:
e path arguments

e bootstrap results
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Relaxation to equilibrium

e How fast do we converge to u? Exponentially
[Cancrini, Martinelli, Roberto, C.T. *08|

pw(fPrg) — p(flulg) < Crgexp(—t/7(q)), Vf.g

7(q) < o0 VYg>0

e Which scaling for 7 (=inverse of spectral gap) as ¢ | 07
[Martinelli, C.T. '16]

e/l = L, < 7(q) < ellosdl/a
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A generic KCSM on Z°

The influence classes:
choose C1, ..., C,, finite subsets of Z¢ with 0 ¢ uir, C;.

Constraint at x:
at least one of the m translated sets C; + x is completely empty.

Er.1 Friedrickson Andersen k-facilitated models (FA-kf) on Z¢:
m = (2kd) and C1,... C(Qd) are all the k-uples of nearest
k
neighbours, i.e. at least k empty neighbours, k € [1,d]

Fr.2 Easton Z: m=dand C; = —¢€},...Cqy= —€4, e.g. d =2
constraint x = at least one empty site in x — €1 Ux — &

Ex. 3 North East on Z?: m =1 and Cy = (€1, €), i.e. top and
right neighbours both empty.
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Properties

e 1 is a reversible invariant measure
e blocked clusters and blocked configurations;

e blocked clusters < occupied sites in the final configuration
for the correspondent monotone cellular automata

e critical density
¢c = inf{q € [0,1] : pq(cellular automata empties 0) = 1}

e Fast and FA-kf : ¢. =0
e North-East: ¢. € (0,1) = critical density of oriented perc.
e 7(q) <oo Vqg>gq. ,7(q) =00 for g < q.

o [. <7< ele [Cancrini, Martinelli, Roberto, C.T. "08]



FA1f and East : Arrhenius vs superArrhenius

Is 7 determined only by L.? NO

1/d
FA1f and East: both L. = (%) yet very different

FA-1f: 7(q) ~ L% [Cancrini, Martinelli,Roberto, C.T. *08]

East: 7(q) ~ Lifh’g Le/(2log2) [Aldous, Diaconis *02, Cancrini,
Martinelli, Roberto, C.T.’08, Chleboun, Faggionato, Martinelli’15]
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FA1f and East : Arrhenius vs superArrhenius

Is 7 determined only by L.? NO

1/d
FA1f and East: both L. = (%) yet very different

FA-1f: 7(q) ~ L% [Cancrini, Martinelli,Roberto, C.T. *08]

East: 7(q) ~ Lgh)g Le/(2l0g2) [Aldous, Diaconis *02, Cancrini,
Martinelli, Roberto, C.T.’08, Chleboun, Faggionato, Martinelli’15]

g (1+exp(1/T))"

for FA1f: Arrhenius

Log,(viscosity in poise)

) for East: superArrhenius
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Intuition behind the 1/¢®W) scaling for FA-1f

e An isolated vacancy cannot disappear
e A vacancy can create a vacancy nearby at rate ¢

e A vacancy with a nearby vacancy disappears at rate 1 — g

At low ¢ : a vacancy moves to a nearest neighbour at rate ¢

Ex. d=1:
T~ 1/¢® = time to cover equilibrium intervacancy distance 1/q
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Intuition behind the 1/ q®os(/9) scaling for East

The model has logarithmic energy barriers

Ex. d=1

e combinatorial result [Chung, Diaconis, Graham)]:
if 0 is empty and the next vacancy to the right is at ¢,
filling 0 requires creating at least log,(¢) simultaneous
vacancies in (0, £)

e Equilibrium distance among 0’s is 1/¢

e physicists — 7 = %‘ logz g (Evans, Sollich '03)

e Correct result accounting for entropy contributions

= 1llog2dl/2

q
(Cancrini, Martinelli, Roberto, C.T. 08)

C.TONINELLI



A universality result for cellular automata in Z>

Take u € SY, let H, := {z € Z? :< x,u >< 0}.
u is a stable direction if starting from n empty on H, and filled
on Z?\ H, no other site can be emptied.

u stable if the empty region
cannot expand

Filled region

e supercritical if 3 open semicircle without stable directions;

e critical if every open semicircle has a stable direction and 3
a semicircle with a finite number of stable directions

e subcritical otherwise



A universality result for cellular automata in Z>

Theorem [Bollobas, Smith, Uzzell ’15]

e Supercritical models: ¢. =0 and L. = 1/q6(1)
e Critical models: ¢g. = 0 and Ja > 0 s.t. L. = O(exp(1/¢*))
e Subcritical models: ¢g. > 0

L.(q) is determined by the action of the cellular automata on
discrete half planes

For supercritical models there is a finite empty cluster, the
droplet from which we can empty an infinite region.

C.TONINELLI



Our examples

Red= stable direction; Green= unstable direction

FA1f . supercritical . Ky
East: supercritical . S

FA2: critical . s
North-East : subcritical . S

A single empty site is a droplet both for East and FA1f



Supecritical KCSM on 7.

Theorem [Martinelli, C.T. ’16]

A refined classification : a supercritical model is rooted if there
are two non opposite stable directions. It is unrooted otherwise.

e for all supercritical unrooted models 7 ~ 1/ ¢®m

e for all supercritical rooted models 7 ~ 1/ qe(l"g(l/ 0) > L.

v

Namely
e unrooted models: 7 < L., Arrhenius behavior
e rooted models: 7 > L., superArrhenius behavior

In particular: FA1f is unrooted, East is rooted
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Intuition behind the rooted/unrooted result

e Unrooted models
e there is an empty droplet that can be shifted along a line
e empty droplet plays the role of the vacancy of FA1f
e scaling proven via renormalization to FA1f model

e Rooted models
e there is not an empty droplet that can be shifted
e from any finite empty region we can empty only a cone. Ex.
East with vacancy at 0: we empty the positive quadrant
e a combinatorial argument gives logarithmic energy barriers
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Out of equilibrium

What happens if we start from an initial measure v # p?

Do we converge to u?

Blocked configurations — convergence to equilibrium cannot be
uniform on all initial configurations

If ¢,¢ > g. and v is Bernoulli-¢’ measure

lim [ dv(p)Ey(f(ne)) = p(f) V[ local

t—o00

Main difficulties:
e non attractive — failure of coupling arguments
e failure of classic coercive inequalities

¢ log Sobolev constant diverges with the volume
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Out of equilibrium: East model

Theorem [Cancrini, Martinelli, Schonmann, C.T.’10], [Chlebloun,
Faggionato, Martinelli’15]

i [ ) -nnl < e { SPEER 02

t—o0

Key ingredients (d=1):

Oriented constraints: evolution at z is influenced by evolution
only on y > 2z and influences evolution only on y < x

start with x empty and let ¢; be the time of its first update;

e at ti: 1, is distributed with p and x + 1 is empty;

let to > t; be time of the first updated at x + 1;
e at to: Myy1,Mm, are distributed with p and x + 2 is empty ...

e cquilibrium is preserved and extended
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Out of equilibrium: FAI1f

Theorem [Blondel, Cancrini, Martinelli, Roberto, C.T. ’12]
47 < 1/2 s.t. if ¢ > @ and v is Bernoulli-¢’ with ¢’ > 0

| lim [ dv()E,(f(m)) — ()] < e(f) exp(~t"/%/c)

t—o0

Key ingredients:
e starting from a single zero we can unblock any region

e prove that Ve > 0 with high probability a completely filled
region of > et sites does not occur in [0, ¢]

e — effective Sobolev constant is e — use hypercontractivity
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Out of equilibrium: (many) open issues

e extend FA1f result to the whole regime ¢ > 0
e extend to more complicate constraints, e.g. FA-2f

e what happens if ¢ > ¢. and ¢ < q.? coarsening of blocked
structures..
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Summary

e KCSM are stochastic models for liquid/glass
and jamming transitions

e intimate relation to monotone cellular automata
(e.g. bootstrap percolation)

e the ergodic regime corresponds to the non percolating
regime for the cellular automata

e 7 =1/gap < oo in the ergodic regime
e the critical scaling can be > then the critical length of the
cellular automata — energy barriers
Open
e scaling of 7 as ¢q | ¢, for a generic KCSM;
e out of equilibrium = evolution after a density quench

e prove the emergence of a non random limiting shape
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FEast model: why a log barrier?

Start with a single vacancy at the origin
S= configs reacheable via paths with < n simultaneous 0’s;
L(n)= distance from the origin of leftmost 0 maximized on S

S1= configurations in S and with only one vacancy in [—oo, —1];
L;(n)= distance from the origin of leftmost 0 maximized on S;
e optimal path proceeds via stepping-stones: create isolated
vacancy at —Lj(n); restart from it to create an isolated
vacancy at —Lj(n) — Li(n — 1); etc..
L(n) = Ll(n) + Ll(n — 1) + .. .Ll(l)
e to put an isolated 0 at —Lj(n) we should have a 0 at
—Li(n) + 1 and remove it using at most n — 1 vacancies

Li(n)=Ln—1)+1

= Ln)=2"-1



